Plastics Blog

You are now viewing GMN Plastics blogs. To view all GMN Blogs click here.
Chris Passanante, GMN
Plastic decorating: painting & laser etching
By Chris Passanante Mar 27, 2017

In part five of our plastic decorating series, we will discuss painting and laser etching. Painting is another standard plastic decorating option and is widely utilized across different industries. Painting employs multiple process methods including robotic painting and hand spray painting. The differentiator between these two options is the program volume. High volume production shifts towards automatic processes while lower volumes lean towards manual painting.

There are many benefits of painting. First, painting can achieve highly specific colors that are crucial for customers’ branding. Next, painting allows for multiple colors to be applied to a part. This process also has the ability to hide mold flow lines, knit lines and other molding imperfections that are sometimes inevitable in production. Additionally, painting can offer a textured effect with soft touch paint that provides a rubber feel, clear coat, or protective coating depending on program requirements.

As a decorative option, painting can be costly and masking can be labor intensive depending on the part. Painting requires a clean environment and sometimes the curing time is longer than for other decorative technologies.

Oftentimes, painting processes are used in collaboration with laser etching. Laser etching is a technology that uses a laser to burn away the paint in specified areas on a part. Laser etching can achieve very fine detail and can be utilized on multiple materials including silicone, hard thermoplastics, as well as metal. Along with removing paint, laser etching can permanently engrave and etch plastic. One aspect of production is to optimize cycle time by fixturing multiple parts at once during laser etching.

It is important to consider that with laser etching, the initial programming can be timely and the masking needed is labor intensive throughout the process.

Rubber keypads are a good example of the collaboration between painting and laser etching that has been utilized for years. This combination of technologies is also very popular in the automotive industry, especially in gear shift indicators, and it’s likely that these processes were utilized on a plastic piece within your vehicle.

In our final plastic decorating article, we will discuss insert mold decorating.

To learn more about the plastic decorative options offered at GMN, please visit the rest of our blog series by clicking here

Chris Passanante, GMN
Plastic decorating: vacuum metallization
By Chris Passanante Feb 16, 2017
Vacuum metallized plastic part.

In this fourth part of our plastic decorating series, we will take a look at vacuum metallization. Vacuum metallization is a unique decorating technology that bonds a metallic layer to the plastic substrate through a vacuum vapor deposition process. This capability has both functional and decorative uses, such as EMI/RFI shielding or providing a chrome metallic finish.

Vacuum metallization is applied to the back side of a clear plastic part, but it appears to be chrome on the front side (looking through the clear material). This approach has allowed GMN to provide customers with some unique looking parts due to the 3-dimensional floating effect it that can be achieved with the right design inputs.  In some instances, we combine printing techniques and debossed lettering or images on the backside of the part and then vacuum metallize it for an additional effect.

At GMN, our team of plastic experts can include translucent backlighting on vacuum metallized parts to achieve a dead-front effect. This means that graphics or an LCD display will show through the chrome when the part is backlit, but will disappear behind the chrome when the lighting is turned off. 

Some considerations for this capability are that vacuum metallized parts can pick up fingerprints easily and depending on the detail of the part, the process of masking can be labor intensive. Overall, vacuum metallization is a bit more costly than other decorative options, but it achieves a very distinct and unique look that will allow your product to stand out from the competition.

Next, we’ll discuss the dual technologies of painting and laser etching plastic components.

Check out other blogs from this series to learn about more plastic decorative options:

Chris Passanante, GMN
Plastic decorating: hot stamping
By Chris Passanante Dec 06, 2016
This plastic part was decorated using hot stamping.

In part three of our plastic decorating series, we will discuss hot stamping. This is a mature technology that continues to produce high quality parts year after year. Hot stamping utilizes heat and pressure to transfer predried ink or foil from a roll of film to a plastic part. The process is achieved by running the foil between the hot stamping die, then heating the die, and finally pressing the die down to apply the foil to the part. The decorative foil will only be applied to whichever part of the plastic is raised the highest.

Through hot stamping, a two-color, two-tone part can be decorated without having to do the time-consuming tasks of masking or painting. Another benefit of this process is that the ink doesn’t need to cure. Since the foil is transferred to the plastic part via heat, there is no need to run it through an oven afterwards. Intricate details can be achieved through this process as well. However, due to machine limitations there are restrictions on size.

This is an optimal technology for achieving metallic colors, and the shiny ink tones produced are unique within plastic decorating. In addition, the foil applied during hot stamping is durable and can withstand harsh environmental conditions.  

In our next article, we’ll explore the unique technology of vacuum metallization. 

Check out other blogs from this series to learn about more plastic decorative options:

Chris Passanante, GMN
Plastic decorating: screen printing
By Chris Passanante Nov 15, 2016
Screen printing is a popular plastic decorative option for achieving large graphics.

With multiple plastic decorative options available, it can be tricky identifying the correct solution for your program. Throughout this blog series, we will discuss different plastic decorating capabilities and the considerations of each. Today we’ll look at screen printing in particular.

In the first article of this series, “Plastic decorating: pad printing” we discussed pad printing. While pad printing is limited to smaller sizes of artwork, screen printing excels in larger coverages of ink for bigger graphics. This printing technology applies ink to the plastic part through mesh material. During the screen fabrication emulsion process, the pitch of the screen determines where the ink is applied. Screen printing is a good choice for high volume production programs and has the ability to decorate multiple parts at the exact same time. Additionally, there is a shorter set-up time associated with screen printing compared to other decorative options. For best results, flat surfaces are ideal for the screen printing process as well.

Because screen printing is optimal for large swatches of graphics, achieving the details of fine artwork can be challenging. A longer curing time can be associated with this process as well, especially if conventional drying inks are used without a UV system. Despite these challenges, screen printing is a popular technology that has successfully met many program requirements.

Our next decorative technology, hot stamping, provides the ability to achieve metallic colors.

Check out other blogs from this series to learn about more plastic decorative options:

Bruce Wold, GMN
Designing for manufacturability with plastics
By Bruce Wold Aug 04, 2016
Designing for manufacturability

A very important aspect of project planning is assessing the design and providing design considerations for part manufacturability. During this phase, Elite Plastics program managers and engineers are looking for anything that might cause problems in the molding process including both cosmetic and dimensional issues. Typical issues include wall thickness, wall to rib ratio, draft angles, boss diameters, undercuts, weld line locations, and texture choices. Elite Plastics solves this problem with years of experience and state-of-the-art software simulators that allow engineers to get a closer look at the part by dissecting it into smaller pieces. These tools can help identify these issues so that they can be solved prior to production.

One of the main issues faced during project development is wall thickness. The wall thickness depends on many factors and there is no density that works universally for all projects, so it must be customized per part. Wall thickness is important because it affects processing of the part and depending on how far the material needs to flow, this can affect both cosmetics and dimensions. If the walls are too thin than the melted plastic moves slowly through the tool, which makes it difficult to fill. On the other hand, if the walls are too thick than it takes longer for the plastic to cool, which can cause part shrinkage. This happens because the areas of plastic on the outside cool more quickly than the inside, which can cave in. Where possible, there needs to be even wall thickness and smooth transitions for the material to flow through correctly.

Wall to rib ratios are another important consideration during part design.  Ribs are commonly used in plastics manufacturing as a way to increase the strength of the part structurally. It’s important to note that rib thickness must be 60% or less than the wall thickness of the part or the ribs will sink and be seen through the other side of the part. 

One of the main considerations during injection molding manufacturing is the part draft angles. This is because the part needs to be able to get out of the tool and to do this there cannot be a 0 degree, or exactly perpendicular, draft. A 0 degree draft angle would cause the part to get stuck inside the tool. A part with heavy texture will need to increase the draft angles even more because the plastic is more likely to stick to the tool. The key takeaway here is that correct draft angles will make the part look good without getting stuck.

Boss diameters, the holes where screws are inserted, are important to consider too. The boss diameter needs to be the right size because it typically holds a metal insert which needs to fit in correctly. If the boss wall is too thick, there will be sinking on the other side of the part. If the diameter is too small, the insert will not fit in the hole. There are industry specific standards based on each manufacturer.

An undercut can be defined as a recessed area of the part, and in terms of molding this means that the undercut area makes the part unable to release out of the tool. The plastic is injected around the undercut feature and the part cannot be ejected because the shape curves inward. The part is stuck because the plastic has formed around the tool which causes problems during production.

Weld lines are a cosmetic issue for consideration. A weld line occurs when the material wraps around a feature and comes back together around an obstruction while filling the tool. When this happens, a small line is formed called a weld, or knit, line. This needs to be considered during part design because the weld line is tricky to hide. When determining the location of a weld line it is important to look at the plastic temperature, gate location, speed of flowing plastic, gate thickness, gate location, and gate height.

Texture can be used to hide molding flaws. For example, when the part design will give you sink a heavier texture can help to hide this. Using texture like this has a lot of tradeoffs in design and many customer negotiations occur.

During the stage of project planning when part design occurs, all of these factors are critical to build a successful part that meets customer specifications. The main issues to consider in regards to part design include wall thickness, wall to rib ratio, draft angles, boss diameters, undercuts, weld lines, and texture. 

Denys Sanftleben, GMN
Plastic decorating: pad printing
By Denys Sanftleben Jun 29, 2016
Pad printing at Elite Plastics

At Elite Plastics, we go beyond the standard injection and compression molding processes to offer full solutions to our customers through secondary processes. Within these secondary processes, we offer a range of plastic decorating capabilities in-house in our Beaverton, Oregon facility. These decorative technologies include pad printing, screen printing, hot stamping, vacuum metallization, painting and laser etching, and insert mold decorating.

One of the standard decorative technologies at Elite Plastics is pad printing. Through this printing process, ink is transferred from the cliché and is applied to the part via the pad. To do this, the artwork is etched onto the cliché, a flat plate, and ink is deposited into the grooves of the image. From there, the pad comes down on the cliché and picks up the image before transferring it to the part. At Elite Plastics, there are two types of pad printing machines including a programmable micro printer and standard pad printers. The difference between the two types is that the standard machine is equipped with stationary fixtures while the programmable printer is able to move the fixture so that the part can be printed on at multiple angles. Another major strength of pad printing compared to other decorative processes is the ability to print multiple colors during one set-up rather than through individual set-ups per color. This saves crucial time and money for the program. Pad printing is able to achieve fine print graphics as well.

Considerations when evaluating pad printing as a decorative option include the type of plastic material and the size of the artwork. If the plastic material being printed on has a heavy textured finish, the ink may not print as crisply or thoroughly as it would on a smooth material. Some plastic materials aren’t cohesive with inks and require a pre-treatment to ensure good adhesion. After production, a post-treatment is done to ensure that the ink is cured quickly. Despite these considerations, pad printing technology is highly recommended for its ability to achieve multiple colors and angles in one run.

In our next article we will discuss screen printing technology and its application for plastic parts. 

 

Edward Laffert, GMN
Why the annealing process is crucial for plastics
By Edward Lafferty Jun 10, 2016
Plastic molding machine for the annealing process

In simple terms, annealing is a manufacturing process of heating a material up for a period of time before allowing it to cool down. This capability can be applied to all three types of basic materials, ceramic, metal, and polymer, but we focus on plastic material here at Elite Plastics. In the plastics industry specifically, annealing is the process of heating a plastic part up to half of the melt temperature for a moderate period of time before letting the plastic cool back down. When the part is reheated like this, the material relaxes and the molded stress is reduced. Annealing is a secondary operation, specifically a heat treatment, and isn’t typically done for all plastics parts or even in most plastic industries, but it is an important technology here at Elite Plastics.

This is an important step of the molding process because most plastic materials are poor conductors of heat which can lead to part damage. Because the plastic parts are heated up to high temperatures through annealing, the material is able to relax so that it does not react to stress caused by molding when it is in its final application or shape.  These stresses typically include tension or compression (built-in stress or molded stress).

The purpose of annealing can vary for different plastic materials, but Elite Plastics uses it to ensure part stability over time. This is important for two main reasons. First, by reducing the stress, the plastic part will have better mechanical and thermal properties because there are fewer sites in the polymer that could propagate a crack or expand the part. Secondly, because most of the plastic parts that Elite Plastics produces are painted, a crack would be very visible against the paint. This is because the part material will contract and expand over time and if it has not already experienced this fluctuation at a more extreme condition through annealing, it will noticeably crack.

 While the annealing process is not used in every plastic industry, Elite Plastics is committed to utilizing the technology to ensure plastic part quality over time. 

Chris Passanante, GMN
GMN's plastic division celebrates 20 years
By Chris Passanante Apr 13, 2016
GMN’s plastic division celebrates 20 years

To mark the two decades since GM Nameplate acquired its plastic division in Beaverton, Oregon, the employees of the Beaverton Division gathered for an internal celebration. In 1995, GM Nameplate bought Danegon Plastics, now known as Elite Plastics, and after 20 successful years, the facility has grown larger than ever. Joining GMN allowed Danegon Plastics to become a custom manufacturer and in turn, offered GMN the plastic injection molding capabilities it needed.

GMN’s plastic division is a facility solely dedicated to plastic manufacturing. Plastic injection molding is the foundation of our plastic manufacturing expertise and after 20 years, the division’s capabilities have grown to encompass a huge range of technologies. These include plastic decorating, plastic tooling, plastic machining, and assembly, in addition to injection and compression molding. In an effort to offer our customers full solutions, our plastic division plays a crucial role in value-added assemblies and custom manufactured parts. 

To learn more about GMN’s plastic division, click here

Edward Laffert, GMN
Paulson training program
By Edward Lafferty Feb 09, 2016
Employee training program

Last year, GMN Plastics adopted a new employee training system known as Paulson training. For the past year, every employee at GMN Plastics has used the program and it has now been implemented as one of the first steps of new hire job training.

The program has been very effective in helping employees understand basic safety on the molding floor, common manufacturing problems and how to overcome them. The Paulson training has educated our employees with extensive industry specific vocabulary as well. Employees need to pass the training before they can operate machinery to produce parts and this is a good way to identify when people are ready to handle the equipment and begin production work. This training is very important because it has been found to lower product defects and boost overall quality which is a key standard at GMN Plastics.

There is a huge opportunity to grow with this program as the GMN Plastics business builds. The system has helped support the growth at GMN Plastics as more employees are hired and more shifts are added to production. 

Samantha Quamma, GMN
GMN Plastics president celebrates 30 years
By Samantha Quamma Jan 06, 2016
Dan Thurmond

Dan Thurmond, President of GMN Plastics, has been working in the plastics industry for his entire career and at GMN Plastics for the past 30 years beginning when he started the business. Dan’s plastic experience began in high school when he took a plastics course and continued after graduation at the LA Trade Technical College where he studied plastics manufacturing. During this time he was involved with The Society of Plastic Engineers, a group he is still a member of today, and had his first apprenticeship with an affiliate company in 1969.

How did Dan go from an apprenticeship to starting his own business? He worked his way up through the plastics industry and eventually started two different plastics manufacturing companies. Dan started his first business, T&T Plastic Molding, in California and built it up before selling it four years later. He then moved to the Pacific Northwest where he began working at View-Master, the producer of stereoscopic children’s toys, where he gained experience running the molding, painting, and tooling operations there.

In 1985, Dan started Danegon Plastics with Egon Steinborn in Oregon. As the business grew, they eventually began working with GM Nameplate (GMN). GMN had been looking for a plastic injection molder as it transitioned from all sheet stock materials to injection molded nameplates that would snap into housing components. After a year and a half working as a subcontractor, GMN bought Danegon Plastics in 1995. From there, Danegon Plastics became GMN Oregon and was eventually rebranded as GMN Plastics, the name it currently holds today. While Dan stayed at the company, Egon Steinborn decided to sell his share of the company and went on to own a tool shop that continues to work with Elite Plastics today.

Dan agreed to stay at GMN Plastics for three years to ensure that the company was up and running. After working with GMN, he decided that there was, and still is, no better place to work and has been here ever since. 

Chris Passanante, GMN’s product line manager of plastics, explains that, “Dan is a wonderful person, his compassion and family values carry over to relationships with his employees.  He has a wealth of industry knowledge and experience, always open to suggestions and values all of his teams input.  I have been very fortunate to be part of Dan’s team for the last 14 years; he has been a great mentor and friend.”

Dan Thurmond is a huge contributor to the success of GMN Plastics and GMN as a whole. He has grown the business as technologies have evolved over time and brings a positive experience to everyone who has the opportunity to work with him. We want to thank Dan for 30 years of commitment to GMN Plastics.