Plastics Blog

You are now viewing GMN Plastics blogs. To view all GMN Blogs click here.
Ken Roney
Statistical process control (SPC) at GMN Plastics
By Ken Roney Jul 22, 2019
Statistical process control at GMN Plastics

As customer needs become more nuanced, it is incumbent on us, as injection molders, to continually innovate and improve our processes to meet their evolving demands. The tools of statistical process control (SPC) are critical in understanding process capabilities, identifying unwanted variations, and refining manufacturing processes. Overall, it enables us to efficiently and consistently meet our customer’s sophisticated needs for quality, lead time, tolerances, delivery, and cost.

Primarily developed by Walter Shewhart at the Bell Labs in 1920s, statistical techniques have been around for decades. Competitive companies worldwide have implemented a wide array of statistical tools to help reduce costs by mitigating scraps, re-work costs, and variances in production processes. These tools range from simple graphing to more complex analysis including Pareto analysis, histograms, capability analysis, fishbone charts, and control charts.

In recent times, advanced statistical software has made “data crunching” easy and efficient. At GMN Plastics, it provides us with a quick overview of how our injection molding processes are performing by analyzing data from internal product characteristics and/or customer-driven product features. This data can be viewed in several forms - as a line graph (Individuals data charting), or by stratifying data into a histogram (including process capability indexes), or a control chart (typically x-bar/R). These tools allow us to understand process conditions and provide actionable data to our engineers in the event of an unforeseen production issue or bottleneck.

We, at GMN Plastics, work with a broad spectrum of part sizes, shapes, forms, and complexities every day. When manufacturing a wide array of components for diverse customers and industries, it is critical to identify machine capabilities and production processes. Being able to make prompt decisions based on statistical data, developed during both initial qualification and in-process production, gives us flexibility in production and allows us to develop sound process controls.

In our upcoming blogs, we will discuss two of the most commonly used statistical tools at GMN Plastics – capability indexes (Cpk) and control charts. Until then, stay tuned and visit our website to learn about our plastic manufacturing capabilities.  

Al Steiner
Classification of plastic injection molds
By Al Steiner May 02, 2019
Tool room at GMN Plastics

There are several factors that dictate the type of mold or tool that is best suited for producing complex injection molded plastic parts. Understanding the requirements for part design, material type, and product life cycles are essential to evaluating and selecting the optimal mold type. In order to define standards for injection mold construction and corresponding life expectancy, the Society of the Plastics Industry (SPI), now known as the Plastics Industry Association, has established the following mold classifications -

1) Class 101 - This class of tooling offers the highest quality molds compared to its counterparts. When production exceeds one million cycles, Class 101 is chosen for its ability to support high volumes. Designed for extreme durability, the mold base is made with heat-treated stainless steel that is hardened to a minimum of 280 BHN. Other molding surfaces, including the cavities and cores, also offer very high wear resistance and can withstand resistance from abrasive additives in the plastics.

2) Class 102 - Supporting medium to high production volumes (ranging from 500,000 to 1 million parts), Class 102 molds work best for abrasive materials and/or parts requiring tight tolerances. Similar to Class 101, the mold base and surfaces under this classification are also made with heat-treated tool steel to effectively combat premature wear and tear.

3) Class 103 - Class 103 tooling is typically made with P20 steel and is commonly used for low to medium volume programs, ranging between 250,000 and 500,000 cycles. While only some tools are heat-treated for wear resistance, the mold base is made with a minimum hardness of 165 BHN. Since the base is softer as compared to Class 101 or 102, these tools aren’t recommended for fabricating parts with stringent tolerances. Striking a balance between quality, performance, and cost, Class 103 molds usually fall within the average price range.

4) Class 104 - Moving a degree lower, Class 104 tools are good for manufacturing parts with non-abrasive materials. With the mold base and cavities constructed of either mild steel, aluminum, or alloys, this classification supports low-cost projects and low-volume production, not exceeding 100,000 cycles.

5) Class 105 - Known as prototype tooling, Class 105 is suited only for quick-turn prototypes or volumes under 500 cycles. The molds are made with extremely fragile materials including soft aluminum, epoxy, cast materials, or any other alloys suitable to produce minimum quantities. These tools exhibit accelerated wear and tear, low strength, and minimal durability.

While GMN Plastics utilizes class 101 through 103 for the majority of its production, it usually steers clear of Class 104 and 105 tooling. Utilizing the above SPI mold classification to determine the correct mold type for your project is crucial to ensure process repeatability, minimize production downtime, and reduce defects and scrap rate. With extensive experience and technical know-how, the engineering team at GMN Plastics can help guide you through the unique parameters for each classification to select the best mold type to meet your quality, production, and cost objectives. To learn more about our tooling and tool room services, visit our website here.

Custom BISCO® silicone gasket for plastic housings
By Josh Dunahoe Jan 24, 2019

A US-based customer of GMN was designing an electrical connection between two plastic housings for an outdoor application. In order to establish the connection, it was vital to achieve a permanent, air-tight seal between the two housings. Given the nature of the design, even the slightest ingress of moisture or foreign particles would hinder the optimal performance and durability of the product. Hence, shielding the seal from dust and water was critical. Additionally, the seal also needed protection from extreme temperatures and flames.   

Originally, the customer utilized a bead of silicone (silicone rubber paste) on the edges of the two housings that hardened over time to form a seal. However, this approach presented several manufacturing challenges and shortcomings. Dispensing a uniform layer of silicone rubber was not only cumbersome, but also inconsistent, leading to an uneven bond line. As the paste became rigid upon drying, it formed a seal that was susceptible to breaking under stress, thereby producing cracks and weakening the bond strength. The drying and curing of the silicone rubber paste also spiked up the processing time, creating a bottleneck on the assembly line.

The customer approached GMN to achieve a better form-fitting solution to prevent moisture ingress. After learning about the environmental conditions that the seal was required to withstand, GMN proposed a custom-fit Roger’s BISCO® silicone foam gasket. From the extensive range of BISCO® silicones available in the market, GMN narrowed it down to HT-800 family to strike the right balance between seal-ability and compressibility. As a Preferred Converter of Rogers Corporation, GMN delivered a high-performance solution with accelerated lead time and competitive pricing.

Roger’s BISCO® silicone, with its high flame resistance, seamlessly fit the needs of the project. In addition to excellent viscoelasticity, it provided high dimensional stability and sealing capability. Contrary to the previous solution, BISCO® silicone foam does not break under stress or pressure. It allowed for quick and easy application, eliminating the extra processing time associated with bead of silicone.

Although, selecting the right material wasn’t enough. Creating a custom shaped gasket to fit the exact configurations of the housings was equally important. Since the customer had initially planned to utilize silicone paste, they did not have the dimensions of the housings readily available. Based on the customer’s sketch and 3D file of the housings, GMN developed a CAD file for the laser tool to fabricate the gasket. By flowing into every nook and cranny of the surface area, the gasket flawlessly married the two housings together to achieve an enhanced seal.

With the help of GMN’s dedicated rapid prototyping team and equipment, we then created two distinct prototypes of custom BISCO® silicone foam HT-800 gaskets in two different thicknesses and durometers. It enabled the customer to test compression and seal strength of the two different gaskets and choose the most optimal solution.

GMN’s ability to determine and source the right material and create a tailored-fit gasket allowed the customer to meet the functional requirements of the project without compromising on the aesthetics. Given our extensive experience and technical expertise with die-cut components, customers can truly rely on GMN to efficiently provide quick design fixes and improvements.

Chris Passanante, GMN
Elite Plastics gets a makeover!
By Chris Passanante Jan 08, 2019
Elite Plastics gets a makeover!

GMN is welcoming the new year with exciting changes! Effective today, we are rebranding Elite Plastics to GMN Plastics. In addition to unifying the company’s different brands (GMN Aerospace and GMN Automotive), the new name and logo will continue to put the focus on our plastic services, while also reflecting the full extent of the vertically-integrated capabilities and solutions that GMN can provide.

This rebranding initiative has allowed us to reflect on all the successes we have celebrated as “Elite Plastics”, and everything we aspire to achieve as “GMN Plastics”. We hope to embark upon a new journey in the growth of our plastics capabilities and services under the new brand name, GMN Plastics.

To learn more about the rebranding, read our press release here.

Plastic decorating options at GMN
By Kenny Pravitz Jun 12, 2018
Plastic decorating options at GMN Plastics

What makes plastic decoration at GMN Plastics unique? Along with dedicated engineers to support your projects from concept to creation, state-of-the-art equipment, a robust quality system, and complementary capabilities to plastic injection molding like value-added assembly, GMN Plastics provides all the decorating options for plastics under a single roof. In this blog, we will be skimming over all the plastic decorating options available at GMN Plastics to understand their core advantages and pitfalls.

1) Pad printing

In the pad printing process, the image is engraved on a plate which is then coated with ink and transferred to the desired surface via a silicone pad.

Advantages of pad printing:

  • Same set-up for multi-color
  • Can accommodate fine artwork and detailed graphics

Limitations of pad printing:

  • Difficult to print on heavy textures or surface finishes
  • Cannot pad print on swooping or curved surfaces
  • Cannot use metallic inks
  • Size restrictions

 

2) Screen printing

In this method, the artwork is transferred on to the plastic surface using a mesh screen and a squeegee.   

Advantages of screen printing:

  • Quick set-up time
  • Can accommodate larger artwork
  • Ideal for high-volume production

Limitations of screen printing:

  • Can only be performed on flat surfaces
  • Needs different screens for different colors
  • Longer curing times
  • Challenging to achieve finely detailed graphics

 

3) Hot stamping

This dry printing technique utilizes heat and pressure to transfer colored foil onto the plastic surface.     

Advantages of hot stamping:

  • No ink-mixing or curing of part required
  • Can accommodate metallic colors

Limitations with hot stamping:

  • Ribbon can be expensive due to the minimum order of quantity (MOQ)
  • Raised surfaces only
  • Size restrictions

 

4) Laser etching

As the name indicates, this technique employs a laser beam to etch a design on the plastic surface which would have otherwise been difficult to mark mechanically.

Advantages of laser etching:

  • Details are permanently etched into the surface of the part
  • Ideal for products with barcodes, lot numbers, backlighting, or intricate artwork

Disadvantages of laser etching:

  • Longer cycle times depending on size and detail of the image
  • Size restrictions

 

5) Spray painting

Often used in conjunction with laser etching, spray painting utilizes either an automated robotic spray or manual hand-spray method to apply the ink on the desired parts. 

Advantages of spray painting:

  • Can hide flaws on the plastic surface
  • Can utilize the manual method for low-volume to mid-volume production and utilize the automated method for high-volume production
  • Can accommodate multiple colors and materials

Disadvantages of spray painting:

  • Detailed masking may be required, making the process labor-intensive
  • Requires a clean environment
  • Requires longer lead time

 

6) In-mold decoration (IMD)

The advanced in-mold decoration technique allows for the printing of highly durable and complex three-dimensional shapes.  

Advantages of in-mold decoration:

  • Can achieve compound curves and complex 3D forms
  • Well suited for designs incorporating small windows or backlighting  
  • Offers versatile decoration options
  • Ideal for high-wear applications

Disadvantages of in-mold decoration:

  • Development phase can be long depending on the design
  • Automation can be expensive

 

To determine the most appropriate plastic decoration technique for any application, there are multiple factors that go into consideration, including the plastic type, environmental requirements (exposure to fluctuating temperatures, humidity, and moisture), component dimensions, cosmetic requirements, regulatory requirements, and production volume. To discuss your unique requirements, request a free design consultation with our experts today. 

Video: Rear case value-added assembly
By Kenny Pravitz May 03, 2018
Value-added assembly is a process where the value of an article is increased at each stage of manufacturing.

There are typically a variety of pieces and processes involved in making a complete part. As a result, customers sometimes require several different suppliers to make each specific component of the assembly. Even smaller products can have a long list of components and suppliers. During the manufacturing process, costs can vary greatly and the time it takes for products to be completed depends on a range of factors, one of them being how long the supply chain is. In general, a shorter supply channel means your products will get to market quicker, with fewer costs. A great way to shorten your supply chain can be to partner with suppliers that offer value-added processes, or can provide multiple different services or aspects of production.

Value-add can be defined as a process where the value of an article is increased at each stage of its manufacturing, bringing an enhanced benefit and cost savings to the customer.

As a value-added supplier, GM Nameplate’s (GMN) plastics division in Beaverton, OR created a video that demonstrates the value-added assembly process of a medical part. In this video, you can see the stages that these molded parts go through to reach the completed subassembly. Similar to most projects at GMN’s plastics division, the process begins with injection molding. Once that part is molded, it can be decorated, depending on what the customer wants. Offering different decorating options, such as screen printing or hot stamping, after a part is formed is an example of a value-added benefit.

In the video, an operator can be seen placing 17 brass inserts in different bosses of the molded part. To make sure the inserts are properly installed every time, the operator places the molded part in a poka-yoke (Japanese term for “mistake-proofing”) fixture. The molded part will only fit in the fixture one way, so the operator installs the inserts into the correct bosses. These inserts are then heat staked, where a heating element makes contact with each brass insert. The insert then transfers heat to the boss, melting the plastic around the screw. This enables the screw to be removed without stripping the plastic.

Next, the video shows the part being placed in another fixture where a three-camera vision system verifies all the inserts were properly installed. This vision system also has a poka-yoke fixture to ensure consistent verification. Once the vision system notifies the operator that all inserts were properly installed, the part moves to the next value-add station. We see the molded part moved to an assembly fixture where a blue latch-spring component (which is also injection molded by GMN) is assembled to the main plastic enclosure. After this, an operator installs gasketing to the perimeter of the part. Finally, the part is inspected and then packaged for shipment.

From beginning to end, multiple different components and processes were used to make this part, all under one roof. This added value allows customers a cost savings as well as a streamlined supply chain, as several components were completed by one manufacturer, instead of multiple vendors for each individual operation. GMN takes a holistic approach to building your device, and the breadth and depth of our internal capabilities bring increased control, predictability, and reduced costs to your supply chain.

To watch this process in action, click play on the video below. 

Video: Two-shot molding
By Kenny Pravitz Mar 27, 2018
A softer plastic resin can be over-molded to a rigid plastic all within the same process with two-shot molding.

When you look at or feel a plastic component, you would usually assume that it’s made of one type of plastic. However, some plastic products are actually made using two different types of resin, sometimes more. You are probably familiar with this application which can be seen in plastic toothbrushes that have a rubberized grip. The main body of the toothbrush is made of a rigid plastic, while the grip is made of a rubberized plastic. Even though there are two different types of plastic present, both were formed at the same time using two-shot molding.

What is two-shot injection molding process? 

A two-shot molding process involves two different resins being injected by two separate barrels. There is a primary barrel, which injects the first resin, forming a rigid substrate in most cases. The secondary barrel then injects a different resin on top of or surrounding the region of the first substrate. 

Depending on the size and intricacy of the part, you can design the tool to make several parts in each cycle. In the video, we see that two parts are completed during each cycle. On the left side, the rigid substrate is injected by the primary barrel and forms the backbone of the two components. The tool then rotates 180 degrees, and the rubberized plastic is injected onto those two pieces by the secondary barrel. While this is being done, two more rigid substrates are made at the same time again by the primary barrel on the left side. After the pieces are injected by the secondary barrel, an end-of-arm tool picks up the completed parts, and then the tool rotates 180 degrees once more, ready to start a new cycle.

Advantages of two-shot injection molding process 

Two-shot molding is ideal for higher volume projects, as more engineering is used in designing the two-shot molding tool. The tooling used for two-shot molding is intricate because it must inject two different plastic resins simultaneously, but only in certain features of the part. Two-shot molding is a much more efficient process for high-volume projects compared to conventional over-molding, where you use two separate tools to manufacture parts with different resins. Due to this efficient output, two-shot molding is frequently used in the automotive and medical industries.

Explanatory video: Two shot injection molding process 

Click on the video below to watch and understand the two-shot injection molding process.

Video: In-mold decorating process
By Kenny Pravitz Jan 30, 2018
IMD allows different graphic overlays to be used in the same molded shape, giving  you customization.

Many industries require the decorative elements of plastic to be highly durable. For instance, the aerospace, automotive, and medical industries have many high-wear applications that require strong, durable parts where printed icons won’t scratch off or fade away. Products that are decorated using first-surface decorating processes, where graphics are placed on the outermost layer (such as pad printing, screen printing, or hot stamping), wear out over time and aren’t suitable for these industries. Depending on the materials and processes used, the inks on plastic pieces can fade out over time, making it difficult or impossible to read indicators on those pieces.

What is in-mold decoration? 

In-mold decoration (IMD) is a process where a graphic overlay is physically fused to injection molded plastic to form one piece. It is a plastic decorating method that ensures the durability of the graphic overlays and allows for multiple design options for the overlays. Molten resin is injected either in front or behind the graphic overlay to form a bond between the two. Unlike pad printing, screen printing, or hot stamping – where inks and overlays are exposed to the user that can deteriorate over time – IMD parts have a layer of plastic that encapsulates the ink, protecting it from users and the outside environment.

GM Nameplate’s (GMN) plastics division in Beaverton, OR, recently created a video that demonstrates the IMD process. In the video, we see an end-of-arm tool pick up a graphic overlay and place it in the injection mold using a vacuum system, while simultaneously removing a part that was just molded. Both of these functions are completed in one cycle, allowing for faster and more efficient production. Locating pins in both the end-of-arm tool and injection mold itself allow for consistent placement of the overlay in the tool, which is critical for functional parts in regulated industries. If the overlays are not correctly and consistently placed in the mold, some portions of the overlay may not be fully encapsulated by plastic during the molding process. To learn more about what the IMD process is, read this blog.

Advantages of in-mold decoration

In-mold decoration is ideal for higher volume projects that have stringent durability requirements, as there is more design engineering required up front than with a standard injection molded part. However, one advantage is that once the graphic overlay and molded part is designed, printed graphics on the overlay can be changed at any time to allow for customization and unlimited design options.

Explanatory video: In-mold decorating process

To watch the IMD process, click play on the video below. 

Chris Passanante, GMN
GMN’s plastics facility becomes ISO 13485 certified
By Chris Passanante Jun 23, 2017
ISO 13485

Due to our ongoing commitment to the medical device industry and growing demand, GM Nameplate’s (GMN) Beaverton, OR Division attained ISO 13485:2003 certification. The Beaverton, OR Division, GMN’s dedicated plastics facility, received this certification after auditing and approval by the Orion Registrar on May 9, 2017. This ISO standard is in regard to the quality management system requirements specific to medical device manufacturers. GMN’s Beaverton, OR Division is the third GMN division to obtain this quality certification.

What does this standard mean for GMN customers?

Meeting the strict standards of ISO 13485 assures that GMN can continue to support existing and future customers in the medical industry. ISO 13485 demonstrates that GMN meets regulatory standards and legal requirements to operate in the medical device industry, reduces risk effectively, and has systems in place to consistently yield safe and effective medical device components.

With little room for error in the medical industry, GMN has continually worked to uphold a quality system that meets the highest quality standards in order to produce best-in-class solutions. This certification validates the strength and sustainability of our processes which differentiates us from competitors.

Dedication to quality

For decades, GMN has shown commitment to the medical device industry and a dedication to creating quality products. Compliance with ISO 13485 ensures that the medical device components and sub-assemblies produced by GMN will meet or exceed thoroughly planned specifications every time, without exception.

As a company that supports multiple regulated industries, such as medical, we are committed to ensuring that our Quality Management System is robust and flexible enough to meet the variety of challenges presented by our wide range of customers and industries. With this new recognition, GMN’s Beaverton, OR Division shows its ability to handle increasingly stringent and diverse customer requirements. In addition, the ISO 13485 compliments ISO 9001, another quality standard that GMN has long been in compliance with, which reflects our continual efforts to broaden our quality system to better align with the current Good Manufacturing Practices.

Chris Passanante, GMN
Plastic decorating: insert mold decorating
By Chris Passanante Apr 25, 2017
Plastic insert mold decorated part for the automotive industry.

In the sixth and final part of our blog series covering plastic decoration capabilities, insert mold decorating will be discussed.

Insert mold decorating, known as IMD, is a technology that imbeds a graphic overlay into an injection molded plastic piece. The IMD machine first picks up the graphic overlay with a robotic arm and then loads it into the mold. Molten resin is then injected into the mold which bonds the overlay to the part. From there, the robotic arm picks up the complete part and sets it onto the conveyer belt to be sent to the operator.

IMD is a high volume application using automated processes. In terms of functionality, this technology is utilized frequently for the aerospace and automotive industries because the process ensures strong durability and that the ink won’t wear off of the part. There are material considerations for bonding to ensure that different materials will adhere correctly. For example, if you are bonding two different materials such as nylon and polycarbonate that don’t want to stick together, it can be challenging to figure out how to bond them together. This can be done on first or second surfaces, meaning placing the graphic overlay either on top or below the plastic, and is a design driven decision.

In addition, IMD parts are bulletproof, which is an important feature for many ruggedized industries. Aesthetically, IMD can pull off multiple effects including wood grain, carbon fiber, and high gloss piano black, which are frequently used in the automotive industry. IMD can also incorporate backlighting technologies. Backlighting can be molded in and bonded into the part versus the use of adhesives.

The development phase for IMD can be long, but prototyping can be very helpful for the design as a production tool. IMD is an advanced process through which many GMN customers have found long lasting results. 

To learn more about the plastic decorative options offered at GMN, please visit the rest of our blog series by clicking here