Video: What is progressive die-cutting?

Profile picture for user Richard Smylie
By Richard Smylie | May 31, 2019
Nissan

Tooling a part to size remains integral to the metal fabrication process. While there are several tooling possibilities including steel-rule and rotary die-cutting, laser and water jet cutting, and compound tools, which method do you employ for efficiently performing multiple operations on a metal component? The answer lies in our newest video. By offering a peek into the functioning of progressive dies, this video clearly illustrates the many advantages of utilizing progressive die-cutting to drive productivity.

To cement our understanding of progressive die-cutting, let’s delve deeper into the Nissan automotive badge featured in the video. Made from aluminum, the badge requires a flat, coiled metal strip to undergo blanking, pre-forming, forming, lancing, debossing, and cutting. If we were to perform each of these operations individually with separate stand-alone tools, it would not only be tedious, but also time-consuming and expensive. Progressive die-cutting, also referred to as progressive stamping, is an effective and efficient way of performing multiple operations under a single die set. A die set comprises of multiple individual dies (or stations) that sequentially perform the desired processes on the metal. The minimum and maximum number of stations in a die set is dictated by the design and part geometry.

The fabrication process begins with mounting the die set on the stamping press and feeding the metal in a coil or sheet form to the press. Registration marks or holes on the metal allow for its precise alignment with the die’s progression. Even the slightest mis-orientation of the substrate with the die set can negatively impact the entire output and hence, remains a crucial factor in the fabrication process. As you can see in the video, the press progressively transfers the metal sheet in the web from one die station to the next through an automated feeder mechanism. The six individual dies in the die set perform the following functions –

  • Die #1 - Cuts the outer circular shape of the badge
  • Die #2 - Lances the part to relieve the metal, thereby preventing it from being deformed in the later stages
  • Die #3 - Pre-forms the middle portion of the badge
  • Die #4 - Pre-forms the edges of the badge
  • Die #5 - Cuts out holes from the center of the badge
  • Die #6 - Debosses, forms, and cuts out the badge, all at the same time

At the end of the progression, the web and finished parts are separated from one another by a lance operation and the final parts slide down a conveyor belt. An operator at the end of the belt inspects and organizes the output. Once the progressive die-cutting process is completed, the Nissan badge undergoes anodizing and pad printing. Anodizing is an electro-chemical process that converts the aluminum surface into a durable, corrosion-resistant, and high-energy surface. Pad printing, an offset printing technique, transfers black ink into the recessed letters of the anodized badge. To learn more about pad printing, learn our blog Fundamentals of pad printing.

Suited for high production volumes, progressive stamping is particularly favored for its efficiency and reduced cycle times. The form, profile, and size of the part play a critical role in determining it’s fit for progressive stamping. This cutting method is ideal when project volumes are high and registration requirements are feasible. To watch the progressive die-cutting press in action, watch our video here.