plastic injection molding

Key Word Search

Filter by Category

Popular tags

3M
ECG
EMI
EP
GMN
GMP
IMD
IQ
ISO
LED
NC
OCA
OQ
PQ
RBH
Tag
VHB
By Kenny Pravitz | May 3, 2018
Value-added assembly is a process where the value of an article is increased at each stage of manufacturing.

There are typically a variety of pieces and processes involved in making a complete part. As a result, customers sometimes require several different suppliers to make each specific component of the assembly. Even smaller products can have a long list of components and suppliers. During the manufacturing process, costs can vary greatly and the time it takes for products to be completed depends on a range of factors, one of them being how long the supply chain is. In general, a shorter supply channel means your products will get to market quicker, with fewer costs. A great way to shorten your supply chain can be to partner with suppliers that offer value-added processes, or can provide multiple different services or aspects of production.

Value-add can be defined as a process where the value of an article is increased at each stage of its manufacturing, bringing an enhanced benefit and cost savings to the customer.

As a value-added supplier, GM Nameplate’s (GMN) plastics division in Beaverton, OR created a video that demonstrates the value-added assembly process of a medical part. In this video, you can see the stages that these molded parts go through to reach the completed subassembly. Similar to most projects at GMN’s plastics division, the process begins with injection molding. Once that part is molded, it can be decorated, depending on what the customer wants. Offering different decorating options, such as screen printing or hot stamping, after a part is formed is an example of a value-added benefit.

In the video, an operator can be seen placing 17 brass inserts in different bosses of the molded part. To make sure the inserts are properly installed every time, the operator places the molded part in a poka-yoke (Japanese term for “mistake-proofing”) fixture. The molded part will only fit in the fixture one way, so the operator installs the inserts into the correct bosses. These inserts are then heat staked, where a heating element makes contact with each brass insert. The insert then transfers heat to the boss, melting the plastic around the screw. This enables the screw to be removed without stripping the plastic.

Next, the video shows the part being placed in another fixture where a three-camera vision system verifies all the inserts were properly installed. This vision system also has a poka-yoke fixture to ensure consistent verification. Once the vision system notifies the operator that all inserts were properly installed, the part moves to the next value-add station. We see the molded part moved to an assembly fixture where a blue latch-spring component (which is also injection molded by GMN) is assembled to the main plastic enclosure. After this, an operator installs gasketing to the perimeter of the part. Finally, the part is inspected and then packaged for shipment.

From beginning to end, multiple different components and processes were used to make this part, all under one roof. This added value allows customers a cost savings as well as a streamlined supply chain, as several components were completed by one manufacturer, instead of multiple vendors for each individual operation. GMN takes a holistic approach to building your device, and the breadth and depth of our internal capabilities bring increased control, predictability, and reduced costs to your supply chain.

To watch this process in action, click play on the video below. 

By Kenny Pravitz | Jan 30, 2018
IMD allows different graphic overlays to be used in the same molded shape, giving  you customization.

Many industries require the decorative elements of plastic to be highly durable. For example, the aerospace, automotive, and medical industries have many high-wear applications that require strong, durable parts where printed icons won’t scratch off or fade away. Products that are decorated using first-surface decorating processes, where graphics are placed on the outermost layer (such as pad printing, screen printing, or hot stamping), wear out over time and aren’t suitable for these industries. Depending on the materials and processes used, the inks on plastic pieces can fade out over time, making it difficult or impossible to read indicators on those pieces.

In-mold decorating (IMD) is a plastic decorating method that ensures the durability of the graphic overlays and allows for multiple design options for the overlays. In brief, IMD is a process where a graphic overlay is physically fused to injection molded plastic to form one piece. Molten resin is injected either in front or behind the graphic overlay to form a bond between the two. Unlike pad printing, screen printing, or hot stamping – where inks and overlays are exposed to the user that can deteriorate over time – IMD parts have a layer of plastic that encapsulates the ink, protecting it from users and the outside environment.

GMN Plastics, GM Nameplate’s (GMN) plastics division in Beaverton, OR, recently created a video that demonstrates the IMD process. In the video, we see an end-of-arm tool pick up a graphic overlay and place it in the injection mold using a vacuum system, while simultaneously removing a part that was just molded. Both of these functions are completed in one cycle, allowing for faster and more efficient production. Locating pins in both the end-of-arm tool and injection mold itself allow for consistent placement of the overlay in the tool, which is critical for functional parts in regulated industries. If the overlays are not correctly and consistently placed in the mold, some portions of the overlay may not be fully encapsulated by plastic during the molding process.

IMD is ideal for higher volume projects that have stringent durability requirements, as there is more design engineering required up front than with a standard injection molded part. However, one advantage is that once the graphic overlay and molded part is designed, printed graphics on the overlay can be changed at any time to allow for customization and unlimited design options.

To learn more about what the IMD process is, read this blog.

To watch the IMD process, click play on the video below. 

Chris Passanante, GMN
By Chris Passanante | Mar 2, 2016
Manufacturing with a 3D printer

After conducting and analyzing the results of GM Nameplate’s latest biannual customer survey, we identified growing trends in the manufacturing industry. One of these trends is the emergence and role of 3D printing within the manufacturing industry. Because a portion of our customers noted that 3D printing is impacting the way they do business, we have decided to dive deeper into the technology.

On a basic level, 3D printing is the process of creating a three-dimensional object and has been around for decades. While the technology isn’t new, the way it’s being utilized as a business tool is transforming. Within GM Nameplate’s plastic division, GMN Plastics, a 3D printer is used as a development tool because of the quick turnaround time, which can be as short as 48 hours.

GMN Plastics’ 3D printer is typically used for customer driven prototypes or internally requested parts rather than for mass production. This is because the 3D printer cannot match the repeatability or quality that a proven injection molding process can achieve. While the cycle time of a 3D printer is quite short, the overall time it would take to produce mass quantities of parts on the 3D printer is much longer than that of injection molding equipment. The 3D printer is also limited in material selection. Because of these limitations, the 3D printer serves as a strong tool for project planning rather than as a production tool.

The 3D printer operates by melting plastic and forming an object out of the material. GMN Plastics possesses software that is compatible to our 3D printer and is able to convert files to a specific format that is readable by the printer. This software writes its own Geometric Dimensioning & Tolerance (GD&T) code to direct the printer. This code tells the printer how, where, and when to move the extruder head. The plastic is heated up enough to cause the plastic to melt, but not so hot that the material degrades or burns, and is pushed through the extruder nozzle to form the piece. The nozzle is capable of moving in very fine increments to create the geometry of the part. The part size is limited by the size of the 3D printer; however, if the part is too large for the work space the design can be scaled down to give customers a general idea of the piece in real form.