metal decoration

Key Word Search

Filter by Category

Popular tags

3M
ECG
EMI
EP
GMN
GMP
IMD
IQ
ISO
LED
NC
OCA
OQ
PQ
RBH
Tag
VHB
Rich Smylie, GMN
By Richard Smylie | Mar 6, 2019
Stainless steel fabrication

From the automotive to appliance industry, whenever a design demands a blend of functionality and aesthetics, a stainless steel construction is commonly given significant consideration. With three times the density of aluminum, stainless steel exhibits superior structural integrity and dent resistance. It not only offers overall brush patterns and brilliant finishes like 2BA, but also provides substantial formability and hardness. Thanks to its unmatched versatility and corrosion resistance, stainless steel is heavily employed in both indoor and outdoor environments.

Our latest video, featuring a stainless steel Lincoln liftgate part, demonstrates one of the many stainless-steel parts fabricated at GMN. As the thickness of the metal primarily drives the tonnage of the press use, the featured liftgate part is processed in a 200-ton press. The fabrication process begins by setting the press with a tool to form the flat, pre-decorated steel sheet. After the sheets are formed, the same press is set with another tool to blank the parts to size, and eventually set with a third tool to create a curved skirt around the edges of the part. In a nutshell, three different dies are sequentially installed one after the other on a single press to form, punch, and finish the flat metal sheet.

In addition to the manufacturing process showcased in the video, GMN also utilizes progressive dies to efficiently fabricate large and complex parts that require more tooling. Depending on the design intent and part size, stainless steel can be fabricated in one progressive die and/or supported with multiple secondary operations sequentially set-up on the same press to bend, coin, blank, or fold the metal. As a part of the post-fabrication process, nickel or chrome plating is frequently applied to stainless steel surfaces and edges to protect the part from harsh environmental conditions.

Whether it is a ferritic (magnetic) or austenitic (non-magnetic) alloy, GMN specializes in the fabrication of different grades and alloys of stainless steel including type 200, 304, and 430. With the ability to fabricate parts up to 40 X 15 inches and up to 1mm thickness, GMN frequently works with steel of different shapes, sizes, and tensile strength. As your one-stop-shop for metal fabrication and decoration needs, GMN also has the capability to emboss, deboss, apply selective or overall mechanical finish, and print patterns or textures before fabricating metal sheets. With global resources in supporting medium to high volume production, you can rely on GMN to help you select the most optimum alloy, process, and equipment to meet your custom metal fabrication needs.

To see the stainless steel fabrication process in action, watch our latest video here.  

Lauren Rowles, GMN
By Lauren Rowles | Dec 20, 2018
GMN's holiday calendar 2019

As part of our yearly tradition, GMN has produced another custom calendar for the upcoming year. Apart from the functional value offered in helping to track the months and days of the year, these calendars also serve as a fun way to show off some of GMN’s decorative capabilities. In collaboration with our Seattle, WA Division, this year’s calendars were created at GMN’s Monroe, NC Division.

This year, we decided to make some exciting modifications to our calendar design, while still maintaining some of the same design elements as in previous years.

On the top strip of the calendar, there is an overlap spin pattern. This finish has been included on some calendars in years past, however, this year we enhanced the spin finish by taking the spin and dragging it along the metal surface, creating a dynamic look that reflects light in an interesting way. While this capability may seem common, the challenge that was posed by this application was achieving the drag spin at an angle and selectively. In order to contain the drag spin finish to only the top area, the process required laying down a resist layer over the desired area before the drag spin was applied. This resist layer protects the bright and other areas of the metal on which we didn’t want the spin to be applied. However, the resist ink can be difficult to work with at times, as it needs to be strong enough to withstand the drag spin, but gentle enough so that it can be removed after the spin is applied.

In addition, to complement and enrich the movement of the drag spin finish, a carbon fiber design was printed on the background of the calendar. Achieving the right balance of color was critical for printing this pattern because the color needed to have enough contrast to be visible but also be light enough to allow for the aluminum material to show through. Lithographic printing was used to print the months of the year onto the metal and create the halftone gradient pattern that is featured. Lastly, the GMN and logo and the year were embossed to add extra dimension and value to the calendar overall.

The entire GMN team is proud of the final product and is excited for it to take us into the new year!

Rich Smylie, GMN
By Richard Smylie | Aug 30, 2018
Diamond-carved nameplate manufactured at GMN

Diamond carving, also known as diamond drag engraving, is a common metal decoration technique that enhances metal components by adding a unique texture. Performed at the back-end of the manufacturing process, this technique creates extremely fine, sharp, and crisp lines on an embossed aluminum surface, which cannot be achieved through any other decoration process. These deeply carved lines on the metal surface also provide a tactile feel, further augmenting the appearance of the component.

Our latest video features the diamond carving operation from our Monroe, NC Division. Illustrating the process of diamond drag engraving in detail, the video also dives deeper into the various textures, patterns, and looks that you can achieve with this technique.

Decorative enhancements if any, such as screen printing or brush finishing, are always applied on the metal before the carving process. Once the aluminum sheet is decorated, the area to be diamond carved is embossed or raised to a height ranging between 0.015” to 0.018”. The embossed sheet is then cut into strips and held in-position on a flatbed table by vacuum. The strips are lubricated with oil to enable smooth and uniform engraving of the metal without galling. The strips are fed into a machine that consists of a large 12” rotating wheel, also referred to as the platinum. A small industrial-grade diamond chip, approximately 0.125” in diameter, is mounted to the platinum. As the wheel spins, the diamond chip abrades the aluminum surface with every rotation, thereby creating parallel lines at a depth of 0.003”. Diamond, being the hardest mineral, works flawlessly to create the desired pattern. In addition, the height of the wheel from the flatbed table can be adjusted vertically to compensate for metals with varying thicknesses and/or embossing heights.    

The spacing between the lines is determined by the speed of the wheel. The slower the speed, the broader the gap between each line, and the faster the speed, the lesser the gap. The number of lines per inch and the angularity of the lines is often customized according to the design intent. The texture or pattern can vary from extremely fine textures that create a subtle shimmer to coarse lines that add a more jagged look.

While diamond carving has been a popular technique for several decades, GM Nameplate (GMN) brings a creative twist to the process. GMN’s expertise and capabilities allow you to apply a layer of transparent ink of any color to the diamond-carved surface. It not only adds a unique look, but also retains the beauty and texture of diamond carving. The ink is always transparent to enable one to see the scribed lines below. Once the ink is screen printed, the ink is cured by baking the component in strip form.

Seen largely on electronics and handheld appliances, GMN has developed diamond-carved nameplates for numerous companies including Mitsubishi, Philips, Bose, and Lincoln. To see the process of diamond carving, watch our video below.  

Rich Smylie, GMN
By Richard Smylie | Aug 2, 2018
A drag spin finish nameplate manufactured by GMN

A spin finish, also known as spotting or engine turning, is a mechanical metal decoration technique that creates visually-striking and repetitive circular patterns. The unique interplay of light as it reflects off the finished metal surface adds movement and enhances the aesthetic appeal of the part. Rising to popularity in the 1920s and 1930s, spin finish was frequently seen in the automotive industry, especially on dashboards and instrumentation panels. However, in recent times, this decorative finish has expanded its reach to include a broad range of industries such as aerospace, appliance, electronics, and more.

Our video below provides a look into the spin finish process accomplished at GM Nameplate’s (GMN) Monroe, NC Division. Primarily performed on aluminum or stainless steel, a mechanical spin finish is always applied on a flat sheet of raw metal. The metal sheet is first lubricated with oil to facilitate uniform spinning and prevent burning of the metal when the abrasive pad is applied. The abrasive pads are mounted on single or multiple spindles that descend on the flat surface to skin the metal in a circular, overlapping pattern. The extent to which the patterns overlap each other can be easily adjusted and altered. There are two types of spin finishes that can be applied:

  • Drag spin - Once the spindle(s) descends on the metal, it literally drags across the surface while continuously blading the metal and creating overlapping swirls.
  • Spot spin - Once the spindle(s) descends, it blades the metal from a targeted spot, ascends, and then descends again on a spot next to it, creating overlapping or isolated patterns.

The computer numerical control (CNC) spin finish machines at GMN can hold up to seven spindles at a time, and the diameter of each spindle can vary from a minimum of 0.5” to a maximum of 20”. The distance between each spindle and the speed at which they travel across the metal surface can be tailored to achieve different looks. Depending on the design intent, the swirling pattern can range from fine, to heavy, to coarse. Spin finishes can also be applied overall or selectively. For selective finishes, a resin is screen-printed on the metal, which protects the desired areas from the abrasive pad, thus creating contrasting looks within the design. Offering a range of sizes, depths, and pattern intensities, the cosmetic variations that spin finish can produce is truly vast.

Once the spin finish is applied, the metal sheet is run through a washing line to remove the oil from its surface. The sheet is cleaned, dried, and a clear or tinted coating is applied to the surface of the metal. As a subtractive process, spin finish takes away the inherent protective layer from the surface of the metal and hence adding a top coat is extremely crucial to seal the exposed metal for performance considerations. The sheets are visually inspected and then are ready to be formed into the desired shape. Decorative accents such as lithographic, screen, digital, and/or pad printing, along with embossed or debossed graphics, are often added to spin finished parts to further accentuate their beauty and allure.

With decades of custom manufacturing experience and printing capabilities under its belt, GMN has worked with several leading companies including Dell, Ford, Callaway, General Motors, Keurig, Fiat Chrysler Automobiles (FCA), and Vaio to create stunning spin-finished nameplates and components. Watch the video below to see the spin finish process in action. 

Rich Smylie, GMN
By Richard Smylie | Jun 28, 2018
Brush finished sill plate

Looking to add a subtle, yet eye-catching decorative element to your metal component? Look no further than brush finish! GM Nameplate (GMN) specializes in metal decoration, and one attribute we commonly add to metal is a mechanical brush finish. Performed at the front-end of the manufacturing process, a brush finish consists of many unidirectional lines creating a clean, consistent blanket over the surface of the metal. Applied to either stainless steel or aluminum, brush finishes are often combined with other decoration enhancements such as ElectraGraphics, embossing, and Lensclad, to name a few. Used in a wide range of products, brush finish is particularly prevalent in the electronics, home appliances, and automotive industries.

GMN recently created a video to demonstrate the brush finish process and give you a glimpse into the various looks that can be achieved. The video features our brushing line that’s operated at our Monroe, NC Division.

As you can see in the video, sheets of raw metal are fed into a machine having a large abrasive brushing wheel over it. The brush creates many fine linear abrasions on the sheet, reflecting light in a unique way. There are many design options to consider as well, including selecting a brush texture ranging from fine to heavy, or applying the finish to the metal overall or selectively. For selective finishes, a resist ink is screen-printed onto the metal sheets before the metal is brushed. The resist protects the desired area from being brushed, thus creating an interesting contrast within the design. The contrasting look results solely from the difference in the textures and the way light reflects off of the surface.

After brushing, the metal sheet is washed and dried to remove any residue or oil, and then an operator quickly inspects the sheet for any apparent defects as it continues down the line. A roll-coater can also be set up to apply a tinted or clear coating in-line onto the metal to enhance its durability or appearance. In the video, a tinted coating is applied to the aluminum to make it look slightly grayer. Since stainless steel can be more costly at times, this is a cost-effective way to make aluminum mimic the appearance of stainless steel. 

Finally, the sheets go through an oven, and are again visually examined for any imperfections. This final inspection marks the completion of applying the brush finish, and the metal is now ready to move onto the next process.

To see the brush finishing process, click on the video below.

By Chris Doyle | Dec 20, 2017
Metal Decoration Guide

The use of metal components helps to add a sleek, stunning, and high-end aesthetic to any product. Metal nameplates, labels, and components have an influence on how your product is perceived and serve as a representation of your brand, which is why the design process for these components so crucial. Recently, GM Nameplate (GMN) hosted a webinar on decoration techniques that can be used to create a metal component that will stand out from the crowd. Following the webinar, we decided to compile the topics that were presented into a quick reference guide that you can use to aid you when designing your next metal component. This step-by-step resource will walk you through various eye-catching metal decoration techniques, from embossing and printing options to the latest industry trends, as well as provide you with essential tips and considerations to keep in mind throughout each stage of the development process.

To download this free reference guide, click here.

Teresa Synakowski, GMN
By Teresa Synakowski | Sep 7, 2017
HTC Star Palette

Metal has a richness and elegance that is hard to match. Real metal has a different feel than plastic and has a high-end look to it. You can capitalize on the elegance of your metal component by adding decorative features as well. Although metal decoration can be a tricky process, GM Nameplate (GMN) has the experience and the skill set for the job.

HCT Europe, a luxury beauty product manufacturer, was working on a project for their client Alcor & Co. They began working with GMN to manufacture the aluminum outer shell of a new beauty color palette named the “Star Palette.” The designer of the palette, John Galliano, wanted it to have the appearance of an antique cigarette case from the 1920’s. On each side of the case, Giliano placed the images of two different “paper dolls” that would be embossed. The background of the palette was to be matte black, while a high-gloss black would be applied to the areas of the embossed artwork. GMN worked with the customers to provide design considerations for manufacturability of the metal shell that aligned with the intended design. In addition, this product was on a tight schedule and needed a quick turnaround for launch, which proved difficult for such an intricate part.

GMN’s Monroe, NC Division was tasked to print, emboss, and form the decorated aluminum shell. To produce this part, first the artwork was printed onto a flat sheet of hi-brite aluminum. The areas that were to be embossed were printed with a transparent high-gloss black ink, which allowed for the brilliance of the aluminum to show through, while the background was printed with a matte black ink for contrast. Using progressive Class A tooling, the aluminum shell was embossed in great detail to bring out the design of the two paper dolls, which can be challenging. GMN was able to achieve the intricate embossing on the part through extremely tight art and print registration. The press closely registered to the lines of the design in order to precisely emboss the desired area, leaving the matte finish flat and the doll designs raised. Finally, the metal sheets were formed to the shape of the palette, creating a clean and rounded edge around the entire shell. The customer wanted the artwork to come all the way down to the edge of the part, which is difficult when stretching the metal during the forming process. But after a few rounds of testing, a process was established that allowed for the part to be consistently formed without distorting the embossing or inks.

After this initial project was completed, GMN provided the customer with several prototypes we created of the same part design but with a variety of color and texture combinations. These samples provided physical representations that exemplified how you can completely transform the look of a current design just by applying different ink processes and decorative finishes.

To learn more about embossing options, check out our blog: Tooling for embossed nameplates.

Prototype samples of the HTC palette's original design using different decorative finishes.