membrane switch

Key Word Search

Filter by Category

Popular tags

3M
ECG
EMI
EP
GMN
GMP
IMD
IQ
ISO
LED
NC
OCA
OQ
PQ
RBH
Tag
VHB
By Brian Rowe | Oct 16, 2017
GMN’s customized LED solution and labels for eMW

eMotorWerks, Inc. (eMW), a California-based company, provides cloud-connected charging solutions for electric vehicles. While developing their first portable electric car charger called the JuiceBox, they approached GM Nameplate (GMN) for labels and a customized LED solution along with labels and overlay.

The initial and largest hurdle for eMW remained design development. They were entering a challenging territory of hardware design for the very first time and the nuances of product design can be extremely daunting. However, the engineers at GMN walked the extra mile to quickly fill that void with decades of experience and knowledge. They heard the needs and concerns of eMW and dug deeper into the applications of the final product to provide the best design considerations. eMW wanted the labels to be robust, water resistant and most importantly, UL-certified. Underwriters Laboratories (UL) is a widely accepted certification mark verifying that the product has met UL’s safety standards and requirements. As a portable car charger, the JuiceBox would frequently shuttle between indoor and outdoor environments, which meant that the possibility of prolonged exposure to the sun had to be taken into consideration.

A handful of sketches and revisions later, GMN delivered a prototype within a compressed schedule. eMW’s idea was translated into a concrete creation - a customized non-tactile membrane with LED lights. This proposed solution was not only cost-effective, but also offered a range of performance and durability benefits. Currently, GMN manufactures four discrete parts for the JuiceBox – 1) printed circuit with surface-mounted LEDs, 2) UL-certified graphic overlay, 3) UL-certified warning label, and 4) UL-certified product label.

The flexible circuit that lies beneath the overlay is screen printed on a thin polyester sheet using silver conductive ink. It is then masked with an insulation layer to prevent any electrostatic discharge. This entire circuit construction occupies very little space and prevents moisture ingress. Instead of mounting the circuit on top of the bezel, it is mounted to the underside to keep the profile thin. Thanks to the design flexibility that printed circuits offer, it was possible to tailor the size and width of the circuit, length of the flex tail and exit point as necessary. LEDs are then mounted on the circuit layer. LEDs are a simple, long-lasting and economical solution for lighting up small indicators as required in this case. They are bright, energy efficient, light up quickly and emit very little heat. Three distinct colored LEDs - amber, blue and green - indicate the charging status, the Wi-Fi network, and the power status respectively.

The graphic overlay, acting as the face of the printed circuit, directly interacts with the final user. Hence, striking a synergy between aesthetics and functionality was crucial here. The overlay is printed on a highly-durable polycarbonate with a velvet-textured, anti-glare finish. The background is screen printed to provide opacity. The opaque layer reduces lighted halos of the LEDs by allowing light only through the designated indicators on the surface. The overlay is resistant to water, chemicals and abrasions. The chosen material also provides good UV (ultraviolet) resistance, making it ideal for outdoor settings.

The warning label is produced in the same manner as the graphic overlay, using the same materials, techniques and finishes. While the contrasting black-&-white color palette ensures good readability, the orange rim enhances the appearance of the label. 

The product label that sits on the anterior of the charger is digitally printed on polyester and then covered with a UV-resistant lamination. The protective layer makes the label resilient for its intended indoor & outdoor use by mitigating the fading of ink under the sun. The combination of material, inks, and construction will allow the UL-compliant labels and overlay to retain their appearance for years. 

From design consultation to final production, GMN walked hand-in-hand with eMW throughout the entire process. This fulfilling partnership allowed the timely delivery of a cost-effective, customized solution. To learn more about our custom-made membrane switch solutions, check out our capabilities page here

By Sandy Dick | Jul 11, 2017
CONMED membrane switch assembly

CONMED, a global medical technology company, came to GM Nameplate (GMN) in need of a membrane switch for the control panel of their surgical generator. With diverse capabilities and decades of experience working with the medical industry, GMN was able to provide not only each component of the membrane switch, but the complete, value-added assembly of the part as well.

The graphic overlay was printed using a combination of screen and litho printing and included multiple display windows and LED indicators. The overlay’s background colors were screen printed to achieve a high opacity, which helped to prevent light bleed from the illuminated LEDs. Litho printing was used to apply fine details and halftone patterns to the part. A halftone dot pattern was printed on top of the background to create a gradient effect on the keys and along the top of the overlay. Creating a halftone pattern that achieved the customer’s desired aesthetic proved to be challenging, but the ideal look was reached after several trials of testing various pattern constructions (altering dot size and space between the dots). GMN also printed the membrane circuit that goes behind the overlay and connects to the LEDs and switches.

Another challenge faced during this project was choosing the correct snap domes for the different-sized keys to create a good tactile feel. The difficulty stemmed from the unusual shapes of the keys and various sizes of domes. As a consistent layer across the entire part, the spacer interacts simultaneously with every dome and affects each dome size differently. Therefore, GMN had to carefully review the stack-up to include a spacer layer with the optimal thickness to give every dome size enough room to provide a crisp tactile feel.

A variety of layers were required in the stack-up in order to ensure that the part would function properly. ESD shielding was placed under the circuit connector to protect from static discharge and an aluminum subpanel was added to support the otherwise flexible structure. A foam gasket surrounded the outside of the panel to seal the area from outside moisture and fluids. Finally, due to a concern of the closeness to the electrical components beneath the panel, an insulating layer was added to the backside of the subpanel to prevent the electrical components from shorting out against this metal layer.

From early development through full-scale production, GMN worked closely with the customer to develop this product and provide design considerations for part manufacturability. As a product used in the operating room, GMN held multiple pilot runs to ensure the part functioned as intended and met the customer’s standards. 

CONMED surgical generator with GMN's membrane switch assembly.

By Steve Baker | Jun 16, 2017
GMN's membrane switch assembly for Welch Allyn.

GM Nameplate’s (GMN) Singapore Division supported Welch Allyn, a medical company, to develop and manufacture a membrane switch panel with backlit indicators for their resting electrocardiogram (ECG) device. As a device used to test a patient’s heart activity, it is critical that the backlighting appropriately indicates how much battery power the device possesses.

GMN offers an array of backlighting options including discrete LEDs, fiber optic weave, light guide film, and electroluminescence. The part had strict spacing requirements between its tactile buttons, which influenced GMN to choose discrete LEDs. Discrete LEDs are cost-effective and ideal for lighting up small indicators.

Instead of using three different colored LEDs, GMN installed one bi-color LED to occupy as little space as possible and reduce costs. The two colors within the LED were green to indicate the battery was charged, and red to indicate the battery was dead. To create the amber color that indicates when the device needs charging, the LED was positioned off-centered from the indicator window to effectively blend the red and green colors together.

Another factor GMN had to consider was the material for the overlay. GMN utilized polyester (PET) film, a common overlay material for devices in the medical industry due to its resistance to abrasion and harsh chemicals. As an extremely durable, long-lasting material, PET film is ideal for applications with tactile switches because it’s abnormal for the material to crack. 

By Brian Rowe | Oct 12, 2016
Membrane switch panel for  Given Imaging's medical device.

Given Imaging, a medical technology company, came to GM Nameplate (GMN) to assemble a membrane switch panel for their medical device. When configuring a membrane switch, many factors about each component layer must be taken into consideration. 

As the user interface for a medical device, the screen printed and embossed overlay needed to satisfy stringent requirements. The overlay must act as a sealant to prevent moisture and fluids from reaching the membrane. Additionally, the overlay must be chemical and scratch resistant to combat the strain of daily use. 

Common overlay materials include polyester and polycarbonate. Both materials are affordable options that will protect the circuit membrane from scratches, chemicals, and liquids. Due to the durability of screen printed inks, backprinting is a frequent practice to mitigate product wear and tear from everyday use.    

This Given Imaging overlay contains three colors - teal, white, and a black opaque layer. The opaquing layer was selectively applied around the LEDs which allowed light to shine through and prevented light bleed through unwanted areas of the overlay. Because of the opaquing layer, light only showed through the indicator icon on a button instead of throughout the whole part.

When looking at membrane circuit materials, printed silver ink in lower volumes provides a cheaper option than copper etched circuits, such as Kapton, while still offering comparable performance capabilities. Finding the right membrane circuit for the product application is necessary to manufacture a quality membrane switch.

For more information about GMN’s membrane switch assemblies, visit our capabilities page.  

By Steve Baker | Apr 10, 2015

Welch Allyn just released their newest medical device, the Connex® Spot Monitor. The device monitors vital signs and wirelessly transfers the data. 

GM Nameplate’s U.S. and Singapore teams supported the development and manufacture of the membrane switch with backlit indicator. However, that is just one small piece of this new state-of-the-art device. The Welch Allen team worked tirelessly to bring this new product to life. 

Congratulations to the whole Welch Allen team!  

By Steve Baker | Jan 20, 2015
Acel Rx membrane switch assembly

As a printed electronics manufacturer, GM Nameplate manufactures membrane switches and other electronic components for various industries including medical. GM Nameplate has been working with specialty pharmaceutical company AcelRx since 2009, printing a membrane switch and overlay for their Zalviso device. The device is used for post-operative pain management.

The overlay features a selectively textured front surface and tactile buttons to make it more use friendly. It also features a window for the device’s display screen. This window added a challenge to the part, as it required rigidity and durability without increasing the size of the membrane switch or thickness of the overlay material. GMN created a unique solution for AcelRx by combining the dome spacer with a window stiffener layer and optically bonding  this component to back of the overlay.

In the electronics industry where components are constantly getting smaller, it is imperative to have adequate technical printing resources to yield robust and reliable circuits to avoid any malfunction when in use – and when the component is used on a medical device the stakes are higher. Stringent printing and inspection procedures are in place to ensure that every element of the membrane and overlay meets customer specifications.

This membrane switch is a great example of GMN’s expert electronic printing capabilities in highly regulated industries, and the type of products we will be showcasing at MD&M West in a few weeks. The final parts meet all the technical customer’s requirements while provide the necessary durability and wear resistance needed.

To learn more about GMN’s recent electronics projects visit some of our other blogs.

By Gerry Gallagher | Feb 6, 2014
Manufacturing decorative and functional parts for gaming consoles

GM Nameplate has been providing components to Microsoft for their Xbox systems since the original device, and including the latest Xbox One. Our China facility manufactures various parts on the Xbox One including a capacitive touch membrane circuit, badging, labels and more.

The flexible circuit is one of the most interesting parts that we manufactured for the device. The circuit utilizes capacitive touch technology for the power on/off and optical disc drive (ODD) eject switch. Utilizing this technology increases durability, as there are no mechanical components and meets all the functional needs of the switch. Our engineering team worked closely with the Xbox team to create a cost effective solution meeting all the performance criteria.

In addition to the flexible circuit we also manufactured two 2D electroform logos (in addition to labels and other components) for the Xbox One console and Kinect device. To meet the desired aesthetic GMN developed a unique process to tint the 2D electroform to achieve Xbox One’s unique dark chrome color. This process can be used to create a variety of shades and colors for 2D electroform parts.  The GMN produced logos can be found on the top of the console and on the Kinect device.

Our work with Microsoft on components for the Xbox One is a great example of how our diverse capabilities can serve multiple needs of a customer – in turn reducing supply chain costs and simplifying logistics. The GMN capabilities featured on the Xbox One can be found on various other products across nearly every industry.