emboss

Key Word Search

Filter by Category

Popular tags

3M
ECG
EMI
EP
GMN
GMP
IMD
IQ
ISO
LED
NC
OCA
OQ
PQ
RBH
Tag
VHB
Anna Minzel, GMN
By Anna Minzel | Jul 26, 2017
Magni-lens doming can increase the life of a nameplate tenfold

GM Nameplate (GMN) worked with Elkhart Plastics to create a nameplate for one of their products: Kong Coolers. After several months of back-and-forth communication, GMN and Elkhart Plastics went from a rough design of the logo to the finished part that is now being manufactured and placed on all Kong Coolers.

Elkhart Plastics had a list of things they wanted for their part, but some ideas were too intricate to manufacture and wouldn’t fit their budget. However, GMN’s knowledgeable team knew how to achieve the desired look the client wanted. GMN’s wide set of capabilities allowed for all of the different processes required to make this nameplate to be done under one roof: embossing the base layer, screen printing the various logo colors, and affixing the urethane dome (Magni-lens).

Kong Coolers are positioned as one of the most durable coolers in the market and are built for harsh environments. That being said, the nameplate required for this cooler also needed to be durable. The initial design had an aluminum base to achieve a metallic look. However, there was concern for the first design of the nameplate: the adhesive on the embossed regions of the nameplates wasn’t touching the cooler, which left a little amount of surface area to adhere to the cooler.

GMN solved this issue by using silver Mylar instead of aluminum. Silver Mylar is a much more flexible material, so the embossed regions were able to make contact with the cooler. Silver Mylar still gave the logo a metallic look, but was a less expensive option that already came with an aggressive adhesive on the back.

To increase the logo’s durability, GMN applied a Magni-lens layer to the nameplate. Magni-lens is a clear urethane dome that is capable of tremendous impact resistance, while still maintaining a modern look. With the stronger adhesive and the domed urethane cover, this nameplate can survive anything Kong Coolers can survive.

GMN helps customers with design considerations for manufacturability to create superior products. With years of experience, our team knows the best processes to accomplish desired aesthetics while producing the part as economical as possible. In addition, we are able to get samples out quickly for testing to ensure they have the highest degree of quality before going into full production.

For another example of a Magni-lens cooler nameplate, check out this previous blog.

By Rachel Wienckoski | May 18, 2017
Polyester and polycarbonate are both popular overlay materials.

Have you ever walked up to an ATM machine or gas pump and noticed the cracking, fading numbers on the keypad? This is a prime example of why material selection is vital for graphic overlays. At GMN, the two most common materials used for graphic overlays are polyester and polycarbonate. Depending on the application, there are advantages and disadvantages for both materials.

When evaluating overlay materials, one of the most important factors to consider is durability. Polyester and polycarbonate are both extremely durable materials, but polyester is generally known as the more durable option. Polyester has a longer actuation life (over 1 million actuations vs. 200,000 actuations), meaning that it can endure more switch actuations before the overlay will start to crack or deform. As a result, polyester is a great choice for membrane switches and overlay designs that include embossed buttons. Polycarbonate has a wider thickness range, and increasing the thickness of an overlay can help make it more durable. However, polycarbonate is best suited for applications with minimal flex requirements because continual flexing can cause stress fractures over time. Therefore, in the scenario above, polycarbonate was likely chosen for those overlays, when polyester would’ve been a better choice.

In addition, polyester is resistant to abrasion and significantly more resistant to acids and chemicals, making it an ideal substrate for the medical, industrial, and appliance industries. Polycarbonate is flame retardant while polyester is flammable, making polycarbonate perfect for industries in which safety is of high importance, such as the aerospace industry. Alternatively, hard-coating can be used to significantly improve the durability of either material.

While polyester has an edge in terms of durability, polycarbonate has some cosmetic advantages over polyester. Polycarbonate offers a wider range of textures and finishes, which can be attractive when design is the most important factor. It also has very high clarity and color brilliance. If an overlay is being used purely for appearances and won’t be exposed to frequent use, polycarbonate may be the most appropriate substrate choice.

In terms of production, polycarbonate tends to process easier than polyester. It’s very easy to cleanly print on polycarbonate of all thicknesses. Polycarbonate is also easier to die-cut and emboss, which can help to reduce cost.

The cost difference between the two types of materials is minimal, so the application and use considerations are typically the main factors to consider. However overall, polyester is slightly more expensive than polycarbonate.

Polyester and polycarbonate are both excellent material choices for overlays. Ultimately, the choice between the two will depend on the overlay’s design requirements and environmental conditions. For more information on how polyester and polycarbonate compare, visit GMN’s graphic overlays page.

By Brian Rowe | Oct 12, 2016
Membrane switch panel for  Given Imaging's medical device.

Given Imaging, a medical technology company, came to GM Nameplate (GMN) to assemble a membrane switch panel for their medical device. When configuring a membrane switch, many factors about each component layer must be taken into consideration. 

As the user interface for a medical device, the screen printed and embossed overlay needed to satisfy stringent requirements. The overlay must act as a sealant to prevent moisture and fluids from reaching the membrane. Additionally, the overlay must be chemical and scratch resistant to combat the strain of daily use. 

Common overlay materials include polyester and polycarbonate. Both materials are affordable options that will protect the circuit membrane from scratches, chemicals, and liquids. Due to the durability of screen printed inks, backprinting is a frequent practice to mitigate product wear and tear from everyday use.    

This Given Imaging overlay contains three colors - teal, white, and a black opaque layer. The opaquing layer was selectively applied around the LEDs which allowed light to shine through and prevented light bleed through unwanted areas of the overlay. Because of the opaquing layer, light only showed through the indicator icon on a button instead of throughout the whole part.

When looking at membrane circuit materials, printed silver ink in lower volumes provides a cheaper option than copper etched circuits, such as Kapton, while still offering comparable performance capabilities. Finding the right membrane circuit for the product application is necessary to manufacture a quality membrane switch.

For more information about GMN’s membrane switch assemblies, visit our capabilities page.