drag spin finish

Key Word Search

Filter by Category

Popular tags

3M
ECG
EMI
EP
GMN
GMP
IMD
IQ
ISO
LED
NC
OCA
OQ
PQ
RBH
Tag
VHB
Lauren Rowles, GMN
By Lauren Rowles | Dec 20, 2018
GMN's holiday calendar 2019

As part of our yearly tradition, GMN has produced another custom calendar for the upcoming year. Apart from the functional value offered in helping to track the months and days of the year, these calendars also serve as a fun way to show off some of GMN’s decorative capabilities. In collaboration with our Seattle, WA Division, this year’s calendars were created at GMN’s Monroe, NC Division.

This year, we decided to make some exciting modifications to our calendar design, while still maintaining some of the same design elements as in previous years.

On the top strip of the calendar, there is an overlap spin pattern. This finish has been included on some calendars in years past, however, this year we enhanced the spin finish by taking the spin and dragging it along the metal surface, creating a dynamic look that reflects light in an interesting way. While this capability may seem common, the challenge that was posed by this application was achieving the drag spin at an angle and selectively. In order to contain the drag spin finish to only the top area, the process required laying down a resist layer over the desired area before the drag spin was applied. This resist layer protects the bright and other areas of the metal on which we didn’t want the spin to be applied. However, the resist ink can be difficult to work with at times, as it needs to be strong enough to withstand the drag spin, but gentle enough so that it can be removed after the spin is applied.

In addition, to complement and enrich the movement of the drag spin finish, a carbon fiber design was printed on the background of the calendar. Achieving the right balance of color was critical for printing this pattern because the color needed to have enough contrast to be visible but also be light enough to allow for the aluminum material to show through. Lithographic printing was used to print the months of the year onto the metal and create the halftone gradient pattern that is featured. Lastly, the GMN and logo and the year were embossed to add extra dimension and value to the calendar overall.

The entire GMN team is proud of the final product and is excited for it to take us into the new year!

Rich Smylie, GMN
By Richard Smylie | Aug 2, 2018
A drag spin finish nameplate manufactured by GMN

A spin finish, also known as spotting or engine turning, is a mechanical metal decoration technique that creates visually-striking and repetitive circular patterns. The unique interplay of light as it reflects off the finished metal surface adds movement and enhances the aesthetic appeal of the part. Rising to popularity in the 1920s and 1930s, spin finish was frequently seen in the automotive industry, especially on dashboards and instrumentation panels. However, in recent times, this decorative finish has expanded its reach to include a broad range of industries such as aerospace, appliance, electronics, and more.

Our video below provides a look into the spin finish process accomplished at GM Nameplate’s (GMN) Monroe, NC Division. Primarily performed on aluminum or stainless steel, a mechanical spin finish is always applied on a flat sheet of raw metal. The metal sheet is first lubricated with oil to facilitate uniform spinning and prevent burning of the metal when the abrasive pad is applied. The abrasive pads are mounted on single or multiple spindles that descend on the flat surface to skin the metal in a circular, overlapping pattern. The extent to which the patterns overlap each other can be easily adjusted and altered. There are two types of spin finishes that can be applied:

  • Drag spin - Once the spindle(s) descends on the metal, it literally drags across the surface while continuously blading the metal and creating overlapping swirls.
  • Spot spin - Once the spindle(s) descends, it blades the metal from a targeted spot, ascends, and then descends again on a spot next to it, creating overlapping or isolated patterns.

The computer numerical control (CNC) spin finish machines at GMN can hold up to seven spindles at a time, and the diameter of each spindle can vary from a minimum of 0.5” to a maximum of 20”. The distance between each spindle and the speed at which they travel across the metal surface can be tailored to achieve different looks. Depending on the design intent, the swirling pattern can range from fine, to heavy, to coarse. Spin finishes can also be applied overall or selectively. For selective finishes, a resin is screen-printed on the metal, which protects the desired areas from the abrasive pad, thus creating contrasting looks within the design. Offering a range of sizes, depths, and pattern intensities, the cosmetic variations that spin finish can produce is truly vast.

Once the spin finish is applied, the metal sheet is run through a washing line to remove the oil from its surface. The sheet is cleaned, dried, and a clear or tinted coating is applied to the surface of the metal. As a subtractive process, spin finish takes away the inherent protective layer from the surface of the metal and hence adding a top coat is extremely crucial to seal the exposed metal for performance considerations. The sheets are visually inspected and then are ready to be formed into the desired shape. Decorative accents such as lithographic, screen, digital, and/or pad printing, along with embossed or debossed graphics, are often added to spin finished parts to further accentuate their beauty and allure.

With decades of custom manufacturing experience and printing capabilities under its belt, GMN has worked with several leading companies including Dell, Ford, Callaway, General Motors, Keurig, Fiat Chrysler Automobiles (FCA), and Vaio to create stunning spin-finished nameplates and components. Watch the video below to see the spin finish process in action.