brush finish

Key Word Search

Filter by Category

Popular tags

3M
ECG
EMI
EP
GMN
GMP
IMD
IQ
ISO
LED
NC
OCA
OQ
PQ
RBH
Tag
VHB
Rich Smylie, GMN
By Richard Smylie | Jun 28, 2018
Brush finished sill plate

Looking to add a subtle, yet eye-catching decorative element to your metal component? Look no further than brush finish! GM Nameplate (GMN) specializes in metal decoration, and one attribute we commonly add to metal is a mechanical brush finish. Performed at the front-end of the manufacturing process, a brush finish consists of many unidirectional lines creating a clean, consistent blanket over the surface of the metal. Applied to either stainless steel or aluminum, brush finishes are often combined with other decoration enhancements such as ElectraGraphics, embossing, and Lensclad, to name a few. Used in a wide range of products, brush finish is particularly prevalent in the electronics, home appliances, and automotive industries.

GMN recently created a video to demonstrate the brush finish process and give you a glimpse into the various looks that can be achieved. The video features our brushing line that’s operated at our Monroe, NC Division.

As you can see in the video, sheets of raw metal are fed into a machine having a large abrasive brushing wheel over it. The brush creates many fine linear abrasions on the sheet, reflecting light in a unique way. There are many design options to consider as well, including selecting a brush texture ranging from fine to heavy, or applying the finish to the metal overall or selectively. For selective finishes, a resist ink is screen-printed onto the metal sheets before the metal is brushed. The resist protects the desired area from being brushed, thus creating an interesting contrast within the design. The contrasting look results solely from the difference in the textures and the way light reflects off of the surface.

After brushing, the metal sheet is washed and dried to remove any residue or oil, and then an operator quickly inspects the sheet for any apparent defects as it continues down the line. A roll-coater can also be set up to apply a tinted or clear coating in-line onto the metal to enhance its durability or appearance. In the video, a tinted coating is applied to the aluminum to make it look slightly grayer. Since stainless steel can be more costly at times, this is a cost-effective way to make aluminum mimic the appearance of stainless steel. 

Finally, the sheets go through an oven, and are again visually examined for any imperfections. This final inspection marks the completion of applying the brush finish, and the metal is now ready to move onto the next process.

To see the brush finishing process, click on the video below.

By Chris Doyle | Feb 13, 2018
This component was made using 3D electroform

If you’re interested in adding a new and stylish look to your nameplate or component, you may want to consider 3D electroform. Using this process, you can achieve many different intricate looks and design elements on one part. You can create contrast within the nameplate by using an array of textures, depths, and colors. In this blog we will use the Callaway Golf component as an example to highlight different techniques and elements you can achieve with 3D electroform.

In short, 3D electroforming is a process of chrome and nickel plating that forms in a steel mold. The process begins with making a custom tool, using a CNC milling machine to cut out the mold in a block of steel. During this step, textures, finishes, and other desired decorative elements are added within the tooling, creating a unique look for the finished parts. The tool is then dipped into a nickel bath with an electrical current running through it which causes the nickel to start building up on the mold. Then the mold is taken out and washed with water. Next, that mold is dipped into a second tank, a chrome bath, also with an electrical current running through it, to build up a thin layer of chrome around the mold as well. This thin layer of chrome gives the part a high cosmetic finish. Finally, the mold is taken out and cleaned to prepare it for painting or any other decorative elements that will be added.

Spin finish

There are several different finishes and decorative options available with 3D electroform. On the raised silver “V” shape of the Callaway component, you can see a spin finish was applied. Spin finishes are many lines moving in a perfect circle pattern, which can create a specific focal point on the component. Selective spin finishes can be applied so specified regions of the part reflect light in an appealing way.

Brush finish

On the silver streak running horizontally along the Callaway component, you can see a brushed finish was applied. Brush finishes are lines moving in the same parallel direction creating a consistent blanket of lines. They can also be added to selective areas of the component, and can vary from fine to heavy thicknesses.

You can make intricate patterns with 3D electroform

Many different patterns can be created using 3D electorm, and they can be used to achieve unique backgrounds and textures. An example of this can be seen in the black background of the Callaway component, with its deep crisscross pattern.

There is a wide variety of painting and coloring options for 3D electroform parts, which are added after the part is plated. In this component, we see a red gloss, black gloss and matte black applied to the component.

One thing to consider while using 3D electroform is the draft angle. The draft angle means it is difficult to create parts that have 90° perpendicular design elements in them, so they must be changed to greater than 90°. This is required because after a nameplate or component has been formed in the different liquid baths, you must remove it from the tool, and 90° elements are difficult to remove. Some features, like the large “V” of the component, can require 15-20° draft. But once you have this rule in mind, you can create almost any shape or pattern with different finishes and depths all in one nameplate, as it is formed from a machined tool.

The different depths created with 3D electroform is what makes these components stand out compared to nameplates made with embossing and forming tools, which have limitations on how much material can be formed. 3D electroforming also saves time and money by forming multiple finishes and raised areas in one process.

To learn more about this process, read our blog on 3D electroform nameplates for distinct & detailed branding.

 Many decoration options are possible with 3D Electroform