How to select the right touchscreen technology

Profile picture for user Jim Badders
By Jim Badders | Mar 10, 2021
A finger touching a capacitive touchscreen

As touchscreens continue to grow in popularity as a part of user interface systems, choosing the right touchscreen technology is becoming a critical design decision. Each type of touchscreen, resistive or projected capacitive (PCAP), offers a host of different advantages. Given the wide variety of touchscreen options out there, how do you select the one that provides the optimal user experience? 

Six things to consider when choosing a touchscreen technology

In this blog, we’ll be going over six key questions you should be asking at the onset of your product development phase that will help you select the ideal touchscreen technology for your next project.

1) What is the intended use of the device?

The first step is to specifically define what the device will be used for, as this can dictate which touchscreens are feasible. For instance, will your display be used for a military application where it may be subject to harsh conditions, or is the screen intended for an inexpensive toy where durability may not be a huge concern? Both situations would require screen technologies with different functionality, durability, input registration, and pricing. Once you’ve narrowed down the intended use for the display, the next step is to figure out which functionalities are necessary.

2) Which touch features are required?

On your device, will users only need to select single inputs with one finger? If so, a standard 4-wire resistive touchscreen may be a perfect option, as its simple construction handles this without adding much cost. However, if users need to zoom, scroll, or activate features with multiple touchpoints, that will narrow the selection down to screens with multi-touch functionality, such as a projected capacitive (PCAP) or a resistive multi-touch screen (RMTS).

3) How will the touchscreen be activated?

Given the different ways that touchscreens register inputs, the way that the screen will be activated is an important consideration. Will the user be wearing gloves or using another object (such as a pencil or stylus) to touch the screen? If so, specific types of touchscreens might be necessary for those inputs to be registered. While the sensitivity of a projected capacitive touchscreen can be adjusted to register certain styluses and gloves, the object used must be able to disrupt the capacitive field. For applications where other input devices can be used, a resistive touchscreen is a more optimal choice as it can register inputs from nearly any object.

4) What is the environment in which the touchscreen will be used?

Another crucial factor to consider is where the touchscreen will be activated. Will it be subject to harsh cleaning agents in a medical setting? Will it be used in an industrial environment, where it may be subject to repeated impacts? If durability or cleanability is a critical concern, PCAP technology is ideal given that damage to the cover glass doesn’t alter its ability to register inputs correctly. For gentler environments, resistive screens may meet performance requirements without adding additional cost.

5) What is the price point?

While the cost of PCAP touchscreens continues to go down as the technology becomes more popular, resistive touchscreens still tend to be the cheaper option. If you are looking for a touchscreen for a simple toy, game, or other inexpensive application, anything more than a simple 4-wire resistive touchscreen may add unnecessary cost to the device. However, in the case of a computer, smartphone, or other expensive application that requires a high-end look and feel, a projected capacitive screen may be worth the additional cost.

6) How many actuations does the touchscreen need to handle?

Different touchscreen constructions are rated for different numbers of actuations. A 4-wire or 8-wire resistive touchscreen may be optimal for a device that only needs to remain accurate for a few thousand actuations, whereas a 5-wire touchscreen is a better choice if the device will require significantly more usage. However, if a display needs to handle millions of actuations, a projected capacitive screen would be ideal as it can maintain its accuracy over nearly infinite inputs.

While these questions are a great start, this is far from an exhaustive list of variables to consider when deciding on the optimal touchscreen technology. To discuss your project needs and to talk about custom solutions, schedule a consultation with our experts.