Key Word Search

Filter by Category

Popular tags

3M
ECG
EMI
EP
GMN
GMP
IMD
IQ
ISO
LED
NC
OCA
OQ
PQ
RBH
Tag
VHB
By Chris Doyle | Apr 30, 2018
ElectraGraphic nameplates

ElectraGraphics is the process of plating stainless steel with chrome or gold to create a raised or recessed image. Bringing together a handsome blend of elegance and durability, the meticulous procedure of electroplating creates a low-profile, three-dimensional nameplate with crisp details. Suited for small parts with detailed graphics, the process handles fine lines and intricate designs very well. If you are looking for a high-end identification piece that communicates quality and luxury, ElectraGraphics is the undoubted answer.

Depending on the design, the process of creating an ElectraGraphic nameplate can combine one or both of the following stages:

a) Screen printing: The stainless-steel sheet that forms the base of the nameplate is first screen printed with the desired colors. With this process, any combination of colors can be added to the design. However, if the design doesn’t require any colors, the nameplate can directly proceed to the next process.

b) Photo-imaging: Photo-imaging is performed only if there is any bare stainless steel exposing through the nameplate that is not electroplated. The steel can have multiple decorative finishes including brushed, satin, and spin. In this process, the steel sheet (plain, decorated, or screen-printed) is brought to a dark room where it is entirely laminated with a photo-resist, a photo-sensitive material. The area that needs to be electroplated is masked and the resist in the remaining portion is cured by exposing it to light. Finally, the entire sheet is cleaned with a high pH solution. The solution reacts with the resist on masked area that wasn’t affected by light, eventually showing off the bare metal. This masked portion of the nameplate is then electroplated in the next stage.

After screen printing and/or photo-imaging, the stainless-steel sheet is thoroughly cleaned in an anodic bath to get rid of any oil, finger prints, or contamination. It is then sequentially dipped in four different plating tanks - nickel wood strike, copper, nickel sulfate, and chrome (or 24-karat gold, depending on the design). Electroplating remains the most crucial phase because it not only gives the nameplates a shiny metallic look, but also makes them resistant to corrosion. Any unwanted variances in this process can severely impact the adherence of the plating layers, thus affecting the longevity of the nameplates. Hence, the temperature of the plating tanks, voltage, and the length of immersion is closely controlled for every application.

As a custom-manufacturer of nameplates, GMN has worked with several leading companies including Starbucks, HP, Boeing, IBM, Cadillac, Fluke, and Konami to create ElectraGraphic nameplates of unmatched quality and consistency. The metallic elegance of these one-of-a-kind nameplates continues to attract a wide range of industries such as consumer electronics, computer and office equipment, musical instruments, cosmetics packaging, and hand-held appliances.

Autumn Santa Ana, Director of Corporate Quality & Regulations
By Autumn Santa Ana | Apr 26, 2018
GMN upgrades to AS9100D:2016 certification

GM Nameplate (GMN) is thrilled to have received AS9100D:2016 certification in April 2018. This latest certification, applies to a multi-site certificate for three GMN facilities including the Seattle, WA Division, San Jose, CA Division, and Beaverton, OR Division. It symbolizes GMN’s dedication to continuous improvement and the desire to exceed customer quality expectations.

What is AS9100?

AS9100 is an aerospace Quality Management System (QMS) standard. It is based on the international QMS standard ISO 9001, and provides additional requirements specific to the aerospace industry. In a sector governed by federal aviation, space and defense regulations, a AS9100 QMS helps businesses to adapt to the evolving needs and requirements of the aerospace industry. It not only provides a framework for businesses to operate, but also provides customers with confidence about the quality and reliability of the products they receive.

What is AS9100 Rev D?

The international QMS standards are regularly updated to stay relevant to industry needs and adapt to emerging trends. The latest update from AS9100 Rev C to Rev D was released in September 2016 and companies have until September 2018 to transition to the new standard. The revision also aligns the AS9100 standard to the newest revision of ISO 9001 which was released in 2015. AS9100 Rev D puts the spotlight on creating value for customers by integrating QMS requirements into the company’s business processes. During this latest update, significant areas of revision pertain to product safety, counterfeit prevention, risk management, human factors, and configuration management.

GMN’s commitment to quality

GMN first added AS9100 certification to its list of quality certifications in 2007 to support the dynamic needs of the aerospace industry and the customers we serve, like The Boeing Company. GMN underwent an extensive eight-day upgrade audit at its multiple manufacturing sites to obtain the AS9100 Rev D certification. Advancing to the new revision represents our compliance with the most current set of requirements of the rigorous aerospace standards. Conformance to these standards ensures that GMN maintains the highest level of product quality and process control in its manufacturing facilities. After all, quality is an ongoing process.

By Chris Doyle | Apr 17, 2018
Lensclad or thin-doming technology

Lensclad, also known as thin doming, is a proprietary solution by GMN that creates visually-striking and durable nameplates. Compatible with aluminum substrates, the process of Lensclad involves the application of a clear urethane topcoat that encapsulates the entire nameplate. The coating not only shields the nameplate from challenging conditions such as dust, gravel, temperature fluctuations, and humidity, but also adds significant scuff and mar resistance. It also acts as a lens, thus magnifying the underlying colors and features of the design.

Meeting at the crossroads of functionality and aesthetics, Lensclad is a self-healing technology. While all nameplates experience scratches, dents, or chip damage over time, this self-healing technology allows nameplates to absorb damages and restore itself back to its original form. The protective coating is formulated using UV inhibitors which helps it to stay clear and prevents it from yellowing. By enduring most of the “real world” harsh environments, Lensclad averts everyday wear and tear from deteriorating the overall quality of the nameplate.

Lensclad can be applied on flat or curved profiles, and embossed or debossed graphics, making it ideal for a diverse range of products and industries. The strength and durability of Lensclad doming enables the nameplate to withstand heavy impacts and corrosive environments. The technology also meets the rigorous requirements of automotive performance standards, making it a great choice for outdoor applications including cars, boats, and industrial equipment. Cosmetically speaking, Lensclad enhances the look of the nameplate, making it an equally great choice for indoor applications such as consumer goods, home appliances, cosmetic packaging, and car interiors.

Lensclad adds a thickness of 0.008” to the nameplate. This technology gives us the flexibility to vary the hardness of the urethane coating to fit the application. A thicker version of Lensclad, known as magni-lens, is also available, which adds a thickness of 0.060” to the nameplate. While the manufacturing process of magni-lens nameplates varies from that of Lensclad, it eventually offers the same functionality. For applying the thick doming, a nozzle filled with urethane coating applies the resin while moving across the surface of the nameplate. The resin gradually “wets out” the entire surface and dries over a period of 24 hours. The thickness of the nozzle head, the amount of resin it meters out, the direction in which the nozzle moves, and the time it takes to travel across the surface of the nameplate is customized and programmed for every unique application.

GMN has manufactured Lensclad nameplates for several well-known companies including Ford, MAC cosmetics, Honda, Excel dryers, and Estee Lauder to name a few. This performance-driven and cost-effective solution from GMN is truly a game-changer in elevating and preserving the look of your nameplates over time.

By Jim Badders | Apr 12, 2018
Different glass printing techniques

To ensure the success of any glass-printing application, there are numerous factors that go under consideration such as the glass type, inherent tint of the glass, ink type, ink color, curing process, and environmental conditions. However, one crucial factor that needs to be determined is the print method. Glass can be printed on using one of the three techniques - screen printing, digital printing, or frit printing. While all these methods support different shapes, sizes, thicknesses, types of glasses, and allow the use of multiple colors, there are unique pros and cons that distinguish them.

1) Screen printing: Well-suited for a wide range of applications, screen printing is the most cost-effective and most dominantly used glass printing technique. It primarily utilizes two types of inks: enamel inks and UV-cured inks, both offering good opacity. UV-cured inks offer a larger color selection than enamel inks. Since every color requires a separate screen, the process can be time-consuming if the design has several colors involved. In most cases, the graphic features are printed on the rear side of the glass, which eventually gets sealed or bonded with a touchscreen or display. Except for the edges of the glass, the ink is almost never directly exposed to ambient conditions and corrosion. However, if the ink is not specially formulated for printing on glass, it can lose adhesion and begin to chip off very quickly.

2) Digital printing: Digital printing on glass works like a regular inkjet printer, where all you need is a digital art file to print. It offers greater flexibility in terms of changing designs at the last minute. Unlike screen printing, where even the smallest design variation requires the construction of a new screen, modifying an art file for digital printing is extremely quick and easy. This makes it a great choice for prototyping and achieving faster time-to-market products. But it is important to note that the inks utilized for glass digital printing are thinner as compared to the inks employed in screen printing. Hence, while working with light or pastel shades, multiple layers may be required to achieve a sufficient level of opacity. This can lead to increased thickness, posing challenges in the optical bonding process. In contrast to screen printing, where one color is printed at a time, digital printing also allows printing of all the different colors at once. Digital printing on glass is currently undergoing continuous developments to accommodate more types of inks.  

3) Frit printing: Frit printing is very similar to screen printing with the exception of the ink utilized and the curing process. A unique powdered-glass ink is screen printed on the glass and then cured during the heat tempering process. It causes the ink to fuse to the glass, thus offering strong adhesion and making it extremely difficult to remove or scratch the ink off. Since frit printing offers the highest durability out of all the techniques, it is chosen for demanding applications where the glass is regularly exposed to challenging environmental conditions such as in the defense, heavy industrial and automotive sector. However, it is also the most expensive printing method and therefore, not as frequently employed. One of the limitations of this method is that while frit printing can be done on heat-tempered glass, it cannot be utilized for chemically-strengthened glass and the glass thickness is limited to greater than 2mm. Frit colors are also limited to black, white, and some grays.

Bringing together the right mix of functionality and durability for your custom application, the experts at GM Nameplate (GMN) can not only help you select the most suitable printing technique for your glass application, but also support your glass printing and bonding needs from prototyping through production. To learn more about GMN’s bonding solutions, visit our capabilities page here