Key Word Search

Filter by Category

Popular tags

3M
ECG
EMI
EP
GMN
GMP
IMD
IQ
ISO
LED
NC
OCA
OQ
PQ
RBH
Tag
VHB
By Kenny Pravitz | Mar 27, 2018
A softer plastic resin can be over-molded to a rigid plastic all within the same process with two-shot molding.

When you look at or feel a plastic component, you would usually assume that it’s made of one type of plastic. However, some plastic products are actually made using two different types of resin, sometimes more. You are probably familiar with this application which can be seen in plastic toothbrushes that have a rubberized grip. The main body of the toothbrush is made of a rigid plastic, while the grip is made of a rubberized plastic. Even though there are two different types of plastic present, both were formed at the same time using two-shot molding.

GM Nameplate’s (GMN) plastics division in Beaverton, OR recently created a video that demonstrates this two-shot molding process. The process is called two-shot molding because there are two different resins being injected by two separate barrels. There is a primary barrel, which injects the first resin, forming a rigid substrate in most cases. The secondary barrel then injects a different resin on top of or surrounding the region of the first substrate.

Depending on the size and intricacy of the part, you can design the tool to make several parts in each cycle. In the video, we see that two parts are completed during each cycle. On the left side, the rigid substrate is injected by the primary barrel and forms the backbone of the two components. The tool then rotates 180 degrees, and the rubberized plastic is injected onto those two pieces by the secondary barrel. While this is being done, two more rigid substrates are made at the same time again by the primary barrel on the left side. After the pieces are injected by the secondary barrel, an end-of-arm tool picks up the completed parts, and then the tool rotates 180 degrees once more, ready to start a new cycle.

Two-shot molding is ideal for higher volume projects, as more engineering is used in designing the two-shot molding tool. The tooling used for two-shot molding is intricate because it must inject two different plastic resins simultaneously, but only in certain features of the part. Two-shot molding is a much more efficient process for high-volume projects compared to conventional over-molding, where you use two separate tools to manufacture parts with different resins. Due to this efficient output, two-shot molding is frequently used in the automotive and medical industries.

Click on the video below to see the two-shot molding process for yourself!

Clark Mehan
By Clark Mehan | Mar 22, 2018
Different surface energy of different substrates

Pressure-sensitive adhesives (PSA) have made it possible to permanently adhere two dissimilar substrates together. While bonding two surfaces together, there are several factors that need to be considered including surface tension and texture of the substrate, bond strength, surface area, environmental conditions, design, and product application. However, one crucial factor that influences the selection of adhesive is the surface energy of a substrate. Surface energy is the excess energy that flows on the surface of the substrate and is measured in dynes/cm. The dyne level is the actual reading of the critical surface tension.

Based on the surface energy, substrates can be broadly categorized into three groups - high surface energy (HSE), medium surface energy (MSE), and low surface energy (LSE). With high surface energy ranging from 250-1103 dynes/cm, metals like copper, aluminum, zinc, and stainless steel are some of the most popular HSE substrates. The surface energy takes a big dip to 38-50 dynes/cm for MSE substrates such as polycarbonate, polyester, nylon, acrylonitrile butadiene styrene (ABS), and acrylic. Finally, materials with surface energy below 37 dynes/cm fall into the category of LSE. The widely employed LSE substrates include polyethylene, polyvinyl alcohol (PVA), ethylene vinyl acetate (EVA), and polypropylene.

To fully comprehend the importance of surface energy in bonding substrates, let’s take a look into “wetting”. Wettability is the ability of an adhesive to spread on the surface, thereby increasing the contact area and creating a stronger bond. In most cases, when you pour some water on a HSE metal such as copper, the water will quickly spread across the surface and form puddles. On the other hand, when you pour water on ABS, it will form small beads, thus preventing the surface from wetting. Simply put, HSE substrates aid the wetting of the adhesive, while LSE substrates avert the wetting. The surface energy of the substrate dictates the strength of attraction and therefore remains as one of the most critical aspects in bonding.

There is a wide variety of PSA solutions available, each of them offering a unique set of advantages and disadvantages. For example - 3M offers approximately 25 different PSA solutions, with 100MP, 200MP, 300MP and the 300LSE being the most dominantly utilized adhesives. While the high-performance acrylic adhesive family such as the 100MP and 200MP, strongly adheres to most HSE substrates, the 200MP is frequently preferred for MSE substrates, and 300LSE is usually chosen for both MSE and LSE substrates. It is the interplay of several factors that ultimately dictate the selection of the adhesive, thus the optimal solution varies from one application to the other.

As a preferred converter of 3M, Laird Technologies, and Rogers Corporation, GMN has the capabilities to not only tailor the adhesive tapes to match your unique application, but also address any other bonding needs and challenges. To learn more about our die-cut solutions, visit our capabilities page here.

Debbie-Anderson-GMN
By Debbie Anderson | Mar 20, 2018
Functional non-conductive inks at GMN

This blog is the second in our series on functional inks. In our previous blog (read here), we touched upon the various conductive inks used at GM Nameplate (GMN). In this blog, we will explore the different types and applications of non-conductive inks. Non-conductive inks, as the name indicates, do not conduct electricity, but are employed in vital functional products and decorative applications including sensors, membrane switches, graphic overlays, and labels. The non-conductive inks used at GMN include:

Dielectric inks: Dielectric inks are electrically insulating inks that work in tandem with conductive inks by protecting them. In a multi-layer construction of circuitry, dielectric inks prevent the various layers of conductive ink from interacting with each other. By creating insulating barriers, they avert electrical shorting and silver migration. Since most dielectric inks are ultra violet (UV) curable, they can be used on a broad spectrum of rigid and flexible substrates including bare or print-treated polyester, polycarbonate, and glass. They offer strong adhesion properties, superior flexibility, resistance to moisture and abrasion and are minimally affected by folds and bends. Dielectric inks are commonly used in membrane switches, Radio Frequency Identification (RFID) tags, antennas, and electrodes.

Graphic inks: As a custom manufacturer, GMN utilizes graphic inks in a wide range of its components and brand identity products such as nameplates, labels, decorative signs, decals, placards, elastomer keypads, and graphic overlays. The various types of graphic inks that GMN offers include solvent-based inks, water-based inks, UV curable inks, epoxy inks, and air-dry inks. The selection of the appropriate ink for any given application is dictated by a multitude of factors like surface energy and surface tension of the substrate, environmental conditions, and cost. GMN regularly employs screen printing, digital printing, lithographic printing, UV inkjet printing, and UV flexographic printing for the printing of graphic inks. With decades of experience, GMN can create an exact color match or provide a color that matches the Pantone matching system.

Specialty inks: While dielectric and graphic inks significantly dominate the realm of non-conductive inks at GMN, the use of specialty inks are gradually crawling up in the product development phase. The unique characteristics of specialty inks is finding new functional and decorative applications. The most common types of specialty inks seen today are:

a) Thermochromic inks: These are temperature-sensitive inks that change color when the ambient temperature increases beyond a pre-designated value. They come in many colors like shades of neon, blue, purple, etc. Common applications include labels, print advertising, fabrics, biomarkers and sensors.

b) Photochromic inks: These inks temporarily change color when exposed to UV light. Similar to thermochromic inks, these photochromic inks also come in several colors. They can be seen in light-sensitive eyewear solutions, body patches to detect exposure to sunlight, and clothing.

c) Hydrochromic inks: These inks change color when they interact with or get immersed in water. Typical applications include packaging solutions, decorative umbrellas, and clothing.

GMN relies on industry-leading ink compounders to formulate custom inks for its varied customers. Our long-standing relationships with the ink compounders enables GMN to mitigate price volatility and improve efficiency by reducing production lead times. It also allows GMN to meet diverse manufacturing needs and remain agile during the product development process. While each application calls for a specific ink and printing process, GMN works with each customer from beginning to end to determine the needs of the project and provide effective solutions.

Debbie-Anderson-GMN
By Debbie Anderson | Mar 15, 2018
Functional printed electronics inks at GMN

Functional inks are a cost-effective method to manufacture printed and flexible circuits. While the traditional technologies of etched copper flex circuits and printed circuit boards (PCBs) are still prevalent, functional inks have the advantage of being an economical alternative when it comes to printing on flexible substrates and mass-scale production of circuits. In this two-part blog series, we will broadly touch upon the essentials of functional inks employed by GMN in its wide-ranging manufacturing services.

Depending on the ink type and final product application, functional inks can be applied on a wide gamut of both rigid and flexible substrates using various printing techniques including screen printing (sheet-fed and roll-fed), aerosol jet printing, and gravure printing. Functional inks are undeniably more environment-friendly than the traditional technologies. While the subtractive process of etching copper on PCBs requires acid baths, the additive process of using functional inks does not produce any waste streams or involve any hazardous chemicals. Functional inks can be classified into two categories: conductive inks and non-conductive inks. In this blog, we will broadly explore the various conductive inks used in GMN, their properties and applications.

Conductive inks, as the name suggests, are inks that conduct electricity. They are commonly seen in capacitive and membrane switches, Radio Frequency Identification (RFID) tags, touch screens, biomedical and electrochemical sensors, Positive Temperature Coefficient (PTC) heaters, electromagnetic interference/radio frequency interference (EMI/RFI) shielding, and more. Recent developments in stretchable conductive inks are also leading the evolution of wearable electronics.

For any given application, the two C’s that primarily govern the conductive ink selection process are cost and conductivity. Some other key factors that govern decisions include substrate compatibility, the ink’s molecular structure, final product application, and power efficiency requirements. Some of the conductive inks employed by GMN include: 

a) Silver and silver chloride inks: Silver inks offer superior conductivity and low resistance. They are compatible with a broad range of substrates including polyester, polycarbonate, glass, and vinyl, and are resistant to abrasion, folds, and creases. Their high adhesion, high flexibility and ease of printability have made them the ideal choice in medical electrodes and membrane circuits.

b) Carbon-based inks: Carbon inks offer higher resistance, lower conductivity, and superior durability as compared to silver inks. They protect silver inks from silver migration, shield circuits from shorting and are cheaper than silver inks. They also offer similar benefits as silver inks in terms of adhesion properties, ease of printability, and substrate compatibility. Carbon inks are often blended with silver inks to achieve the desired balance between resistivity, conductivity, and cost. Typical applications at GMN include cost-effective capacitive touch switches.

c) Gold and platinum inks: Given the huge cost hurdles associated with noble metals like gold and platinum, these inks are usually produced and utilized in very small quantities. GMN occasionally employs them in the product development stage or in applications where performance benefits outweigh the cost barrier. For example, gold is used in applications where high resistance to oxidation is crucial and platinum is seen in applications that demand high conductivity.

d) Other metal-based inks: Copper inks can be used as a cheaper alternative to silver inks, given its high conductivity, but its low stability often poses limitations on its use. While nickel offers high durability, it is more expensive than carbon inks.

To learn about non-conductive functional inks, stay tuned for our next blog.

By Jim Badders | Mar 7, 2018
Printing on flexible substrates for smart wearables

GM Nameplate (GMN) is excited to announce the opening of an additional bonding operation in Taiwan. This operation will consist of liquid optically bonding (LOCA) and integrating displays, touch screens, and decorative cover glass components with exceptional efficiency and cost-effectiveness.

By establishing an international bonding option in addition to our front panel integration services at our Seattle, WA Division, GMN can offer a larger breadth of integration solutions, enabling us to accommodate a wider range of customers and projects, and increasing our ability to meet our customer’s exact needs.

Advantages to global bonding operation

With this new bonding facility, customers will benefit from simplified logistics, shortened lead times, and a noticeable reduction in freight and labor costs. Most display and touch screen components are manufactured in Asia. Therefore, now manufacturing, bonding, and even assembly will all take place in the same vicinity, which will substantially reduce the current freight time and costs that exist between process stages, especially when leveraging an Asian-based assembly of the final product. This streamlined efficiency and reduction in costs will also residually lead to reduction in component costs and allow for customers to achieve faster time-to-market. In addition, by eradicating the need for multiple shipments of materials internationally, this new operation will help to reduce carbon emissions and lower the carbon footprint of a project.

Partnering for success

GMN pursues the best solutions for our clients’ global manufacturing needs, which sometimes involves getting creative to deliver the greatest overall value. In this case, GMN teamed up with Mildex Optical, a trusted, long-term touch screen partner. To create this well-rounded bonding operation, Mildex is supplying their world-class facility and highly-skilled workforce, while GMN is providing its state-of-the-art equipment and extensive technical know-how and engineering oversight. GMN will oversee the entire bonding process for its customers to ensure that every aspect is executed to best fit the needs of the application.

Same standard of quality and service

This bonding facility in Taiwan will provide the same level of quality and service that customers experience domestically. We hold decades of experience working with display integration and bonding technologies and applications for industries spanning from medical, to agriculture, to aerospace.

Working with our customers to select and integrate the most fitting touch screen, display, or decorative cover glass for their application, GMN continually strives to go above and beyond to meet the needs of our customers, which we will continue to do through the addition of our new bonding and assembly operation in Taiwan.

For additional information about this new display integration and bonding facility, check out our press release.