GMN blog

Keyword Search

Filter by category

Popular tags

3M
ECG
EMI
EP
GMN
GMP
IMD
IQ
ISO
LED
NC
OCA
OQ
PQ
RBH
Tag
VHB
By Steve Baker | Oct 16, 2018
 High-volume-technical-printing

GMN has extensive experience in technical and functional printing for applications across numerous industries. As we have acquired and developed these expertise over the years, we have also amassed a range of processes, technologies, and know-how through which we can produce these products. As a result, GMN is capable of handling virtually any screen-printed technical printing project with volumes and complexities ranging from low to high.

If you are unfamiliar, technical printing is an overarching term that is used to describe functional printing projects that ask for requirements above and beyond the industry standard. Often seen in highly regulated industries, technically printed parts call for exceptionally tight tolerances and acute product specifications. To gain a deeper understanding of technical printing, learn more here.

When it comes to high-volume technical printing jobs in particular, there are a few aspects that you should be aware of before beginning development. The first major decision to be made is which printing process to utilize. Technically printed parts can be achieved using a variety of printing technologies on the market, including gravure, lithographic, cylinder screen, screen printing, and more. However, at GMN, we have specifically chosen to work with standard screen printing processes such as sheet-fed and roll-to-roll (web) printing as our primary processes.

Therefore, we decided to release a blog series that reviews some of the key facts and considerations for gearing up for high-volume technical printing at GMN. In this first blog, we will be examining the distinct screen printing processes available at GMN for technical printing projects, and how they fit into high-volume production.

Comparison of GMN’s screen printing processes for technical printing

With any new technical printing program, the decision of which printing process to utilize is based on the quantity, size, complexity, and functional requirements of the part. At GMN, there are two screen printing methods that can be applied: sheet-fed or roll-to-roll. These methods differ in their ability to handle the core elements listed above, but overall, the central difference is in how the materials are handled. For high-volume technical printing in general, roll-to-roll is the undisputed best screen printing method for production for several reasons, including run speed, material usage, registration, inline inspection, and printing multiple colors per pass. Although, sheet-fed printing plays an important role in this process at GMN as well.

Sheet-fed

Sheet-fed printing is usually employed on low- to medium-volume technical printing jobs. The sheet-fed process requires an operator to load individual sheets into a press and then remove them after each pass, which adds additional time to the overall job. This, combined with its size and run rate limitations (which we will discuss further in the next blog), is why sheet-fed printing has proven to be an inefficient and more costly method for high-volume technical printing.

However, regardless of which printing method is used for production, the sheet-fed process is always used during the development phase for technical printing projects. This is because the development phase calls for speed and agility when creating several revisions of parts at extremely low volumes and in short intervals.

Roll-to-roll

Roll-to-roll printing is the printing method used for high-volume jobs that often contain a high level of complexity as well, which is archetypical for technical printing projects. During roll-to-roll printing, the material is administered in rolls (or webs) and is secured and continually fed through the press by a system of rollers.

High-volume roll-to-roll technical printing has a large presence in the medical industry with applications such as disposables and electrodes as well as in the appliance industry for capacitive touch applications.

While the sheet-fed process can print essentially the same parts, roll-to-roll printing is better equipped for high-volume technical printing because it can print at much higher speeds, tighter tolerances, and heightened quality levels, which can lead to less material waste and cost savings at these larger volumes. This process is significantly faster than the sheet-fed process because parts are being printed continuously since the material never requires handling. Roll-to-roll can also achieve much tighter tolerances and stack-ups, especially since optical registration can be used. 

Other factors that add to roll-to-roll’s superior efficiency include the ability to perform roll-to-roll fabrication and in-process testing in addition to printing. Roll-to-roll is also preferable for through-hole (or via) printing and offers the possibility of printing multiple colors at once. Again, these are elements that we will dive deeper into during our next blog.

GMN’s advantage with high-volume technical printing

On top of the variety of equipment we possess for each printing process, GMN provides a particular advantage during the development and full-scale production stages of high-volume technical printing projects.

Typically, most high-volume technical printing projects are brought to GMN at the front-end of the customer’s development process. The customer may have their first round of artwork, be generally satisfied with the design, or have started looking into inks, but they need support to prepare and finalize the part design and manufacturing process for high-volume production. That’s where GMN comes in.

GMN’s quick-turn prototyping services help to develop high-volume technical printing projects with unparalleled efficiency and performance. Since we offer both sheet-fed and roll-to-roll printing, our experienced and knowledgeable R&D team can approach customer’s projects with a quicker learning curve. We work with our customers to create multiple iterations of their design with quick turnarounds, allowing the customer to fine-tune their artwork to their specifications while we make sure it’s primed for manufacturing and will produce high yields. What makes GMN distinct is that during this development phase, we build these parts at low volumes with the mindset that they will eventually be used for high-volume printing. This notion drives us to ensure that we not only simulate the exact inks, squeegee types, print directions, and screen meshes, but also replicate the specific drying and curing parameters. Therefore, by the end of development, the artwork is already optimized, which allows for a more streamlined transition to high-volume production.

In general, both printing processes can be used to make technically printed parts, but the project requirements, such as volume, tolerance, and circuit complexity, can determine which method is better for your specific application. However, the performance or availability of many of the characteristics (e.g. run rate, tolerance level, etc.) and capabilities mentioned throughout this blog for each printing process is also dependent on the type of equipment used. This is the topic we will explore in our next blog in this series, so stay tuned.

Clark Mehan
By Clark Mehan | Oct 4, 2018
A guide to die-cut components

The world of design engineering and manufacturing is gradually changing. Cumbersome liquid adhesives are being substituted with pressure-sensitive adhesives. Bulky metal housings are being traded for flexible EMI shielding foils and fabrics. Very high bond (VHB) tapes are taking the place of classic O-rings. By replacing and improving these traditional practices, die-cut components are prompting us to address design challenges in a more effective and efficient manner.

If die-cut components spark your curiosity, we have the perfect thing for you. We have created a free guide that sheds light on some of the most widely employed die-cuts solutions. It walks you through the various areas where die-cuts components can enhance the functionality and longevity of your product including thermal management, EMI/RFI shielding, and vibration dampening. It also dives deeper into the unique advantages, characteristics, and properties of die-cut components, and equips you with few design considerations for your next product.

To download the free guide, click here.

Rich Smylie, GMN
By Richard Smylie | Sep 28, 2018
Exploring the process of magni-lens doming at GMN

Versatile and durable, magni-lens doming is a clear two-part urethane development which when applied to a substrate, creates a self-healing dome that stands 0.06” (1.5mm) tall. The most unique feature of Magni-lens doming is that it functions as both a visual and performance enhancement. Visually, it adds richness and a depth of field to the graphics below, and from a performance standpoint, it can withstand the most extreme environments. 

Filmed at our Monroe, NC Division, our latest video will bring you a step closer to the Magni-lens technology. The video not only provides a glimpse into the process of creating the urethane dome, but also illustrates the broad spectrum of industries and products that have embraced magni-lens doming.

To initiate the doming process, the parts are staged on sheets so that they register precisely with the doming machine’s dispensing nozzles. As seen in the video, the dome is created with a nozzle or a hose that meters out a clear urethane coating. As the nozzle glides over the part, it dispenses the urethane polymer across the entire surface. The parts are always placed at a well-maintained distance from each other to avoid ruining the neighboring part in case of an overspill. While the featured Excel dryer part in the video has seven nozzles operating at once, different projects require different settings. Multiple nozzles correspond to the number of parts that are getting domed at a given time and the machine at GMN’s Monroe, NC Division has the capacity to operate up to 24 nozzles simultaneously.

After the urethane is dispensed, the part is inspected to ensure that the coating has traveled all the way up to the edges of the part. The viscus resin gradually “wets out” the entire surface and the part is placed on leveling pads to air dry. Although the coating starts to harden with the “skinning of the urethane surface” in about four hours, it technically takes about a week for the part to be completely cured. Selective doming can also be achieved by using a dam to contain the resin to a specific area. The entire process of Magni-lens doming is performed in a semi-clean room to mitigate dust and foreign particles from entering the water-clear dome.

The size of the part determines the amount of resin dispensed. Since parts come in varying sizes, each of them requires differing amounts of coating. The machine is uniquely programmed for every project, where it measures the length of the part to determine the space necessary between the parts in the set-up stage. Other elements such as the pour speed and the length to which the nozzle travels vertically above the part are also customized.  

The resulting magni-lens dome construction is extremely robust, chemical and moisture resistant, easy to clean and sanitize, and doesn’t deform with heat and fluctuating temperatures. Its versatility, functionality, and compatibility to adhere to a wide range of substrates including polycarbonate, polyester, vinyl, aluminum, and stainless steel, makes it a great choice for both indoor and outdoor applications. Seen widely in industries like automotive, appliances, electronics, and medical, the video will give you a glance into some of nameplates created by GMN over the past few decades.

To see the doming process in action, check out our video below.

By Sandy Dick | Sep 21, 2018
GMN's membrane switch solution for MESA Labs

MESA Laboratories, Inc. was developing a new digital dialysate meter with another vendor. They quickly ran into difficulties that led unwanted moisture ingress into their membrane switch.

GMN’s engineering experts always love a new challenge! GMN’s technical know-how and rapid concept prototyping services enabled MESA Labs to conceptualize a new design. The proposed solution not only eliminated the device’s sealing issues, but also provided enhanced design and functional features.

To learn how GMN fulfilled the project needs and requirements, read our case study here.  

By Neha Toshniwal | Sep 18, 2018
GMN to exhibit at NEDME 2018 in Beaverton

GM Nameplate (GMN), along with its plastics division - Elite Plastics, will be exhibiting at the NW Electronics Design & Manufacturing Expo (NEDME) in booth #M103. The event will take place at Tektronix in Beaverton, Oregon on October 3rd, 2018.

GMN will be showcasing a wide array of our capabilities ranging from injection molding to front panel integration, and plastic decoration to capacitive touch. Our onsite technical experts will also be sharing the latest technological developments at GMN. One of our core strengths lies in translating concepts into concrete creations. From development and production of individual components to complete value-added assembly, GMN provides a holistic approach by delivering a plug-&-play user interface.

We are happy to set up one-to-one meetings to discuss how GMN can support your varied manufacturing needs. To schedule a meeting with a technical expert, please reach out to us directly at info@gmnameplate.com.

Rich Smylie, GMN
By Richard Smylie | Aug 30, 2018
Diamond-carved nameplate manufactured at GMN

Diamond carving, also known as diamond drag engraving, is a common metal decoration technique that enhances metal components by adding a unique texture. Performed at the back-end of the manufacturing process, this technique creates extremely fine, sharp, and crisp lines on an embossed aluminum surface, which cannot be achieved through any other decoration process. These deeply carved lines on the metal surface also provide a tactile feel, further augmenting the appearance of the component.

Our latest video features the diamond carving operation from our Monroe, NC Division. Illustrating the process of diamond drag engraving in detail, the video also dives deeper into the various textures, patterns, and looks that you can achieve with this technique.

Decorative enhancements if any, such as screen printing or brush finishing, are always applied on the metal before the carving process. Once the aluminum sheet is decorated, the area to be diamond carved is embossed or raised to a height ranging between 0.015” to 0.018”. The embossed sheet is then cut into strips and held in-position on a flatbed table by vacuum. The strips are lubricated with oil to enable smooth and uniform engraving of the metal without galling. The strips are fed into a machine that consists of a large 12” rotating wheel, also referred to as the platinum. A small industrial-grade diamond chip, approximately 0.125” in diameter, is mounted to the platinum. As the wheel spins, the diamond chip abrades the aluminum surface with every rotation, thereby creating parallel lines at a depth of 0.003”. Diamond, being the hardest mineral, works flawlessly to create the desired pattern. In addition, the height of the wheel from the flatbed table can be adjusted vertically to compensate for metals with varying thicknesses and/or embossing heights.    

The spacing between the lines is determined by the speed of the wheel. The slower the speed, the broader the gap between each line, and the faster the speed, the lesser the gap. The number of lines per inch and the angularity of the lines is often customized according to the design intent. The texture or pattern can vary from extremely fine textures that create a subtle shimmer to coarse lines that add a more jagged look.

While diamond carving has been a popular technique for several decades, GM Nameplate (GMN) brings a creative twist to the process. GMN’s expertise and capabilities allow you to apply a layer of transparent ink of any color to the diamond-carved surface. It not only adds a unique look, but also retains the beauty and texture of diamond carving. The ink is always transparent to enable one to see the scribed lines below. Once the ink is screen printed, the ink is cured by baking the component in strip form.

Seen largely on electronics and handheld appliances, GMN has developed diamond-carved nameplates for numerous companies including Mitsubishi, Philips, Bose, and Lincoln. To see the process of diamond carving, watch our video below.  

By Daniel Gesua | Aug 27, 2018
Warning Labels

Introduction: A hero emerges!

Meet Gary! Gary hails from a proud species of creators, merchants, and manufacturers who are overflowing with passion to improve society through providing products of immeasurable value. Gary loves his job and takes great pride in his reputation as an environmentally-conscious, efficient, and compliant provider of high-quality goods.  

But on August 30th, new revisions to California’s Proposition 65 (or Prop 65 for short) are being released, and since many of Gary’s customers reside in California, he knows that some of his products may be impacted.


Background: The hero’s challenge

In 1986, California enacted Prop 65, ensuring that businesses provide “clear and reasonable” warnings before “knowingly and intentionally” exposing the public to a certain list of substances which are known to cause cancer or reproductive harm.

To become compliant, companies had to make a choice: either redesign their products to reduce their exposures below the “safe harbor levels,” or commit to displaying complaint warnings that inform consumers of the possible risks before they buy. The substance list is updated yearly by California legislature and consists of over 900 chemicals, including many commonly found materials such as wood dust, aspirin, and gasoline.

Since its enactment, Prop 65 has challenged many companies. In 2016, there were 760 in-court litigation settlements totaling in approximately $30,000,000, and 339 out-of-court settlements totaling in approximately $10,000,000, averaging to over $36,000 per case. Furthermore, all cases related to Prop 65 are open to the public, which can threaten to hurt Gary’s hard-earned reputation!


The Problem: New changes effective August 30th, 2018

Starting on the 30th of August, companies will have new standards to meet under Prop 65. Among other things, the new revision of Prop 65 establishes new formalized labeling requirements for:

  • Foods and alcoholic beverages
  • Certain specific products such as furniture
  • Certain specific environments such as enclosed parking areas

It also adds new requirements including:

  • For products to display warnings in all languages that are already on the label
  • The statement of the specific substance names on the warning signs at each location that the product is on display
  • Presence of the Prop 65 website link on the warnings (www.P65Warnings.ca.gov)
  • Placement of the triangular yellow warning symbol (⚠) on most warnings
  • New requirements related to online sales and catalogues
  • Changes to the language that goes on the labels

Faced with these new changes, Gary has quite a lot on his plate. Not only will Gary be forced to review all his products for the existence of Prop 65 substances and perform scientific tests to assess the exposures they can cause, but he also must overhaul and relabel many of his products, so they meet the new standard.

Luckily for Gary, his loyal friend GM Nameplate (GMN) is just one phone call away.


The stress-free solution: Call the labeling experts

So, without hesitation, Gary makes the call to GMN to find a solution.

GMN Rep: “Hi old friend. How can we help you today?”

Gary: “My team just informed me that 40% of our inventory is affected by the new language requirements of Prop 65. We need to relabel our products to give warnings in Spanish, French, and Japanese, and include a yellow warning signal. We’d also like to reconsider our materials and replace our color palette for a more vibrant shine. The labels need to be scratch proof and heat resistant, and we need them all by the end of next week. Do you think you could help us?”

GMN Rep: “Absolutely! Fear not! We’ve got just the thing!”

The GMN team immediately got to work, and by the end of week, the problem was solved. Now Gary’s team can rest easy and go back to focusing on their true objective of creating amazing products.

If you are like Gary and need to print new custom labels to comply with the changes in Prop 65, request a quote from GMN and we’ll get started on your solution today.

By Steve Baker | Aug 24, 2018
Printed electrodes by GMN

A US-based medical company was developing a wearable cardiac telemetry device to monitor the ECG signals of a patients’ heart. They approached GM Nameplate (GMN) to develop the electrode (circuit) that would be embedded in the low-profile, wireless device that measures, records, and transmits physiological data. In addition to the specific needs regarding the circuit’s slender shape and size, the customer had three crucial requirements:

1) The electrode should have a tight tail pitch - Given the slim shape of the electrode, the customer wanted to use a small connector to the motherboard, and therefore, required the circuit to be fine pitch. Although printing tight pitches can be extremely challenging, the experts at GMN met this requirement by meticulously designing the 0.5 mil tail for the circuit.

2) The silver conductive inks and dielectric inks couldn’t touch the patient’s skin - To meet this requirement, GMN designed the circuit on a polyester substrate. The silver silver chloride pads were printed on the side that would directly stay in contact with the patient’s skin, and the dielectric inks and silver conductive inks were printed on the other side of the substrate. With the polyester substrate acting as a divider, the inks on both sides were connected through via-holes.

3) The electrode needed to meet a target resistance - As a device that would be picking up even the weakest ECG signals, the electrode’s ability to meet a targeted resistance from the silver silver chloride pads to the tail end was extremely critical. This necessity primarily dictated the design of the circuit pattern. Since the traces had to be of a certain length to meet the targeted resistance, GMN elongated the circuit by creating utility loops. The final circuit design was a perfect amalgamation of the customer’s specifications for the part’s shape and GMN’s ability to meet the resistance requirements. During the design development phase, multiple other factors including sheet size, sheet layout, print volumes, tolerances, and ink layers were also taken into account.

Later, the project went through qualification procedures to ensure quality and repeatability throughout production. After a few rounds of prototyping and testing, the parameters for Operational Qualification (OQ), including the ink type, drying temperature, drying capacity, curing process, and print speed, were defined. First part development and manufacturing efficiencies were taken into consideration to develop different print pattern layouts, which eventually caused the most optimum solution to make its way to production. The nominal settings from OQ were run with different material lots on three different setups through the entire production process. All three outputs were measured and evaluated to ensure that all the critical performance parameters were within the window of minimum and maximum levels of variances. After the electrodes were printed and sheeted, they were precisely die-cut with a steel-rule die on a clam shell press.

The high volume of production quantities and the flimsy shape of the electrode made it extremely difficult to handle and test each individual part manually. To address this issue, GMN automated the inspection process by employing a robotic arm. The arm would pick up one circuit at a time and place it in a test fixture where it was tested for continuity and broken traces. The resistance was tested from the end of the fine pitch tail to every individual silver silver chloride pad. The pieces that passed the inspection were sorted to one tray and the defective parts were delivered to another. Automating the final inspection process not only led to faster turnaround, but also resulted in improved consistency and reliability. To dive deeper into the robotic automation at GMN, watch our short video here.

With decades of technical printing experience in highly regulated industries, GMN partnered with this medical customer from the early development phase through multiple design cycles to manufacture a product that met all of their technical specifications. Our rapid prototyping capabilities also enabled the customer to seamlessly transition from concept to high-volume production. Since functional printing projects require extremely tight tolerances, rigorous printing and testing procedures were set in place to ensure that every element of the electrode was carefully controlled. To learn more about the printed electrodes at GMN, read our capabilities page here

By Jason Herndon | Aug 8, 2018
Prototyping solutions by GMN

When it comes to custom manufacturing, prototyping remains an integral part of the design process. Whether you are testing the fit, form, and functionality of a new product, evaluating the feasibility of a unique material, or simply experimenting with novel ideas and concepts, prototyping enables us to venture into new territories. The prototyping services at GM Nameplate (GMN) not only provide quick-turn solutions, but also offer design support to help customers navigate a path towards production.

The prototyping solutions offered by GMN can be briefly divided into the following three types -

1) Quick-turn prototypes - Quick-turn prototypes, also known as rapid concept prototypes, put the focus on speed. This program aims to deliver a product into the customer’s hands as quickly as possible, which in turn takes them a step closer to production. Customers can assess multiple design considerations with accelerated lead times and reduced costs compared to full production parts. While rapid concept prototypes are not intended for qualification testing, they facilitate customers to experiment, refine, evaluate, and validate designs while making swift iterations. So, if you are looking to assess different material options for a gasket or compare a satin finish versus a gloss finish, then rapid concept prototyping is the way to go!  

GMN has a dedicated product development team and manufacturing equipment that operates outside of regular production schedules, which helps us stay agile and accommodate varied needs. While developing prototypes, GMN utilizes digital printing for parts that will often use alternate printing processes in final production to remain cost and time efficient. Similarly, for die-cut prototypes, GMN often uses materials specified for the final product, but utilizes laser cutting and other “soft tooling” methods before transitioning to hard tooling for production. This allows customers to compare multiple design options without investing in the appropriate production tooling.

2) Conceptual development prototypes - Conceptual development prototypes focus on translating concepts into concrete solutions. This development process optimizes ideas to achieve a viable product by evolving designs towards production-friendly solutions. By letting us perform quick risk mitigation testing on new materials or designs on the front-end, it reduces unexpected challenges later in the design process. While, this prototyping solution often comes into play while working with unique materials, it can also be helpful if a design is ahead of the technology curve. When a customer approaches GMN with a unique material, we can address the unknowns associated with processing the material. This includes testing ink adhesion, verifying substrate compatibility with the manufacturing processes, optimizing processing parameters, and testing new design applications before engaging in larger production runs.

GMN’s customers bring a variety of cutting-edge products to market and the complex nature of these projects requires a focused and methodical approach to development. Conceptual development prototypes are often accompanied by a formal development proposal including a statement of work with discrete milestones that allow GMN to periodically regroup with its customers to determine the design or processing solution that best meets their needs.

3) Pre-production development prototypes - Pre-production development prototypes bring a design concept to a repeatable and robust production solution. Pre-production prototyping ensures that regulatory requirements, including Design Failure Mode and Effect Analysis (DFMEA), Process Failure Mode Effects Analysis (PFMEA) or Production Part Approval Process (PPAP), are met. Pre-production development prototypes lay emphasis on establishing process capabilities, improving yields, and optimizing designs for high-volume manufacturing. Since this approach utilizes all of the standard full-scale production equipment and process controls, it is best suited for products that are ready to transition into volume production and can be used for purposes such as final qualification and testing.

To learn more about our rapid prototyping lead times and pricing, visit our capabilities page here.

Rich Smylie, GMN
By Richard Smylie | Aug 2, 2018
A drag spin finish nameplate manufactured by GMN

A spin finish, also known as spotting or engine turning, is a mechanical metal decoration technique that creates visually-striking and repetitive circular patterns. The unique interplay of light as it reflects off the finished metal surface adds movement and enhances the aesthetic appeal of the part. Rising to popularity in the 1920s and 1930s, spin finish was frequently seen in the automotive industry, especially on dashboards and instrumentation panels. However, in recent times, this decorative finish has expanded its reach to include a broad range of industries such as aerospace, appliance, electronics, and more.

Our video below provides a look into the spin finish process accomplished at GM Nameplate’s (GMN) Monroe, NC Division. Primarily performed on aluminum or stainless steel, a mechanical spin finish is always applied on a flat sheet of raw metal. The metal sheet is first lubricated with oil to facilitate uniform spinning and prevent burning of the metal when the abrasive pad is applied. The abrasive pads are mounted on single or multiple spindles that descend on the flat surface to skin the metal in a circular, overlapping pattern. The extent to which the patterns overlap each other can be easily adjusted and altered. There are two types of spin finishes that can be applied:

  • Drag spin - Once the spindle(s) descends on the metal, it literally drags across the surface while continuously blading the metal and creating overlapping swirls.
  • Spot spin - Once the spindle(s) descends, it blades the metal from a targeted spot, ascends, and then descends again on a spot next to it, creating overlapping or isolated patterns.

The computer numerical control (CNC) spin finish machines at GMN can hold up to seven spindles at a time, and the diameter of each spindle can vary from a minimum of 0.5” to a maximum of 20”. The distance between each spindle and the speed at which they travel across the metal surface can be tailored to achieve different looks. Depending on the design intent, the swirling pattern can range from fine, to heavy, to coarse. Spin finishes can also be applied overall or selectively. For selective finishes, a resin is screen-printed on the metal, which protects the desired areas from the abrasive pad, thus creating contrasting looks within the design. Offering a range of sizes, depths, and pattern intensities, the cosmetic variations that spin finish can produce is truly vast.

Once the spin finish is applied, the metal sheet is run through a washing line to remove the oil from its surface. The sheet is cleaned, dried, and a clear or tinted coating is applied to the surface of the metal. As a subtractive process, spin finish takes away the inherent protective layer from the surface of the metal and hence adding a top coat is extremely crucial to seal the exposed metal for performance considerations. The sheets are visually inspected and then are ready to be formed into the desired shape. Decorative accents such as lithographic, screen, digital, and/or pad printing, along with embossed or debossed graphics, are often added to spin finished parts to further accentuate their beauty and allure.

With decades of custom manufacturing experience and printing capabilities under its belt, GMN has worked with several leading companies including Dell, Ford, Callaway, General Motors, Keurig, Fiat Chrysler Automobiles (FCA), and Vaio to create stunning spin-finished nameplates and components. Watch the video below to see the spin finish process in action. 

Pages