GMN blog

Keyword Search

Filter by category

Popular tags

3M
ECG
EMI
EP
GMN
GMP
IMD
IQ
ISO
LED
NC
OCA
OQ
PQ
RBH
Tag
VHB
By Josh Dunahoe | Jan 24, 2019
GMN fabricates custom silicone foam gasket

A US-based customer of GMN was designing an electrical connection between two plastic housings for an outdoor application. In order to establish the connection, it was vital to achieve a permanent, air-tight seal between the two housings. Given the nature of the design, even the slightest ingress of moisture or foreign particles would hinder the optimal performance and durability of the product. Hence, shielding the seal from dust and water was critical. Additionally, the seal also needed protection from extreme temperatures and flames.   

Originally, the customer utilized a bead of silicone (silicone rubber paste) on the edges of the two housings that hardened over time to form a seal. However, this approach presented several manufacturing challenges and shortcomings. Dispensing a uniform layer of silicone rubber was not only cumbersome, but also inconsistent, leading to an uneven bond line. As the paste became rigid upon drying, it formed a seal that was susceptible to breaking under stress, thereby producing cracks and weakening the bond strength. The drying and curing of the silicone rubber paste also spiked up the processing time, creating a bottleneck on the assembly line.

The customer approached GMN to achieve a better form-fitting solution to prevent moisture ingress. After learning about the environmental conditions that the seal was required to withstand, GMN proposed a custom-fit Roger’s BISCO® silicone foam gasket. From the extensive range of BISCO® silicones available in the market, GMN narrowed it down to HT-800 family to strike the right balance between seal-ability and compressibility. As a Preferred Converter of Rogers Corporation, GMN delivered a high-performance solution with accelerated lead time and competitive pricing.

Roger’s BISCO® silicone, with its high flame resistance, seamlessly fit the needs of the project. In addition to excellent viscoelasticity, it provided high dimensional stability and sealing capability. Contrary to the previous solution, BISCO® silicone foam does not break under stress or pressure. It allowed for quick and easy application, eliminating the extra processing time associated with bead of silicone.

Although, selecting the right material wasn’t enough. Creating a custom shaped gasket to fit the exact configurations of the housings was equally important. Since the customer had initially planned to utilize silicone paste, they did not have the dimensions of the housings readily available. Based on the customer’s sketch and 3D file of the housings, GMN developed a CAD file for the laser tool to fabricate the gasket. By flowing into every nook and cranny of the surface area, the gasket flawlessly married the two housings together to achieve an enhanced seal.

With the help of GMN’s dedicated rapid prototyping team and equipment, we then created two distinct prototypes of custom BISCO® silicone foam HT-800 gaskets in two different thicknesses and durometers. It enabled the customer to test compression and seal strength of the two different gaskets and choose the most optimal solution.

GMN’s ability to determine and source the right material and create a tailored-fit gasket allowed the customer to meet the functional requirements of the project without compromising on the aesthetics. Given our extensive experience and technical expertise with die-cut components, customers can truly rely on GMN to efficiently provide quick design fixes and improvements.

By Steve Baker | Jan 17, 2019
MD&M West at Anaheim Convention Center

It’s that time of the year again when the medical manufacturing community comes together to showcase its latest products and technologies at Medical Design & Manufacturing (MD&M) West. Attracting professionals across the country, this premier MedTech event also provides unparalleled networking opportunities and a platform to share new ideas and developments.

From February 5-7th, GMN will be exhibiting in booth #1659 at the Anaheim Convention Center. As a custom manufacturer of medical device components and sub-assemblies, GMN will be featuring its most recent user-interface solutions and varied capabilities including plastic injection molding, capacitive touch sensors, die-cut components, value-added assembly, and more! Aligning with the leading trends, our newest samples on display will help you discover the many ways you can integrate popular technologies to make your products pop.

Our team of experts will be on site to discuss your upcoming projects and toughest manufacturing challenges. To schedule a personal consultation with a GMN representative, reach out to us directly at info@gmnameplate.com

Chris Passanante, GMN
By Chris Passanante | Jan 8, 2019
Elite Plastics rebranded as GMN Plastics

GMN is welcoming the new year with exciting changes! Effective today, we are rebranding Elite Plastics to GMN Plastics. In addition to unifying the company’s different brands (GMN Aerospace and GMN Automotive), the new name and logo will continue to put the focus on our plastic services, while also reflecting the full extent of the vertically-integrated capabilities and solutions that GMN can provide.

This rebranding initiative has allowed us to reflect on all the successes we have celebrated as “Elite Plastics”, and everything we aspire to achieve as “GMN Plastics”. We hope to embark upon a new journey in the growth of our plastics capabilities and services under the new brand name, GMN Plastics.

To learn more about the rebranding, read our press release here.

Lauren Rowles, GMN
By Lauren Rowles | Dec 20, 2018
GMN's holiday calendar 2019

As part of our yearly tradition, GMN has produced another custom calendar for the upcoming year. Apart from the functional value offered in helping to track the months and days of the year, these calendars also serve as a fun way to show off some of GMN’s decorative capabilities. In collaboration with our Seattle, WA Division, this year’s calendars were created at GMN’s Monroe, NC Division.

This year, we decided to make some exciting modifications to our calendar design, while still maintaining some of the same design elements as in previous years.

On the top strip of the calendar, there is an overlap spin pattern. This finish has been included on some calendars in years past, however, this year we enhanced the spin finish by taking the spin and dragging it along the metal surface, creating a dynamic look that reflects light in an interesting way. While this capability may seem common, the challenge that was posed by this application was achieving the drag spin at an angle and selectively. In order to contain the drag spin finish to only the top area, the process required laying down a resist layer over the desired area before the drag spin was applied. This resist layer protects the bright and other areas of the metal on which we didn’t want the spin to be applied. However, the resist ink can be difficult to work with at times, as it needs to be strong enough to withstand the drag spin, but gentle enough so that it can be removed after the spin is applied.

In addition, to complement and enrich the movement of the drag spin finish, a carbon fiber design was printed on the background of the calendar. Achieving the right balance of color was critical for printing this pattern because the color needed to have enough contrast to be visible but also be light enough to allow for the aluminum material to show through. Lithographic printing was used to print the months of the year onto the metal and create the halftone gradient pattern that is featured. Lastly, the GMN and logo and the year were embossed to add extra dimension and value to the calendar overall.

The entire GMN team is proud of the final product and is excited for it to take us into the new year!

Rich Smylie, GMN
By Richard Smylie | Dec 18, 2018
Pad printing at GMN

Pad printing is an offset printing process where ink is transferred from a cliché to the required component via a pad. Bringing together a blend of consistency, repeatability, and durability, pad printing can help you achieve intricate patterns and designs. While most decorative techniques such as screen and lithographic printing require a flat surface, pad printing is one of the very few processes that is well suited for decorating gently curved, irregular, textured, and/or cylindrical surfaces. Predominantly seen in the automotive, electronics, appliance, personal care, and medical industries, pad printing is often chosen for applications that will endure significant handling and need to withstand the test of time.

Our latest video was created to not only equip you with the essentials of pad printing, but also to walk you through the step-by-step process. First, the artwork is etched onto the cliché (flat plate), and ink is deposited into the etched recess. Next, a silicone pad picks up the inked image and descends onto the part to transfer a clean, crisp, and lasting image. Then, the pad is pressed on a polyester film to remove any excess ink. Comprising of a low-tack pressure-sensitive adhesive, the polyester film removes any residual ink from the pad prior to the next printing cycle.

From standard to programmable multi-axis printers, this video offers a glimpse into the different pad printing presses utilized at GMN. Armed with a rotating fixture, the programmable multi-axis printer is capable of numerous hits in multiple color combinations on different axes, all in a single set-up. This capability eliminates the need to transfer the part manually from one station to the other, resulting in significant time and cost savings.

Pad printing is compatible with a broad range of substrates including stainless steel, polycarbonate, polyethylene terephthalate (PET), glass, polyvinyl chloride (PVC), acrylic, and acrylonitrile butadiene styrene (ABS). Very few plastic materials such as low (LDPE) and high-density polyethylene (HDPE), and polypropylene aren’t cohesive with pad printing inks and require a pre-treatment to ensure good adhesion.

For every project, custom fixtures are designed and built to register the component to the pad printing head. The alignment of the ink pad with respect to the size and geometry of the part is specifically engineered to ensure exact registration. As seen with the Nissan badge in the video, the pliability of the silicone pad allows for printing with extreme precision, preventing the ink from coming in contact on the inside walls of the recessed letters. Maintaining the viscosity of the ink is extremely crucial to ensure the ink deposition accuracy and consistency. While the ink needs to be fluid enough to deposit on the substrate, it should not bleed out of the impression area. Thinners and adhesion promoters can be added to inks to achieve the desired viscosity level. Most of the inks used for pad printing at GMN are air-dried and are usually cured in conveyor ovens. Several other factors including the shape, material and durometer of the pad, location and color of the etched artwork, and tilt of the ink pad, are critical to the success of any project.

To see the pad printing process in action, watch our video here.

By Steve Baker | Nov 30, 2018
Flexible substrates for smart wearables

The multi-billion-dollar industry of smart wearables is becoming ubiquitous and witnessing revolutionary developments each day. From smart tattoos that track sunlight exposure to smart insoles that monitor your footsteps, smart technological advancements are clearly pushing the boundaries of innovation. As the wearable technology industry is still at a nascent stage of its development curve, the consortium of functional printing professionals including the technical printers, designers, engineers, and system integrators, are working together to investigate new processes, materials, technologies, and testing methods.

Aside from the dominant world of smart watches, there has been a significant growth and interest in smart clothing, electronics, and sensor solutions. Some of the common considerations that need to be addressed before developing a wearable solution include:

  • Biocompatibility - Since most wearables come in direct or close contact with skin, biocompatibility is of paramount importance to ensure user safety. Depending on the intended use of the device, compounds in wearable substrates and construction layers can potentially be exposed to sweat, rain, humidity, sunscreens, and insect repellants. A comprehensive understanding of the interaction of various external factors is crucial towards eliminating unwanted risks such as skin sensitization, allergic reactions, and irritation. While there are no industry standards governing biocompatibility across all wearable devices, ISO 10993 provides a framework for wearable medical devices.
  • Power management - Effective power management still remains a significant hurdle in developing wearable solutions. Thin and compact batteries often translate to shorter battery life and companies are continuously struggling to extend the battery life for devices to last at least one cycle of usage. While space is a huge constraint when working with small and lightweight devices, companies are harvesting energy by employing solar cells or powering batteries using the body movement and body heat of the wearer. Companies are actively trading Wi-Fi connectivity with Bluetooth communication modules for efficient power consumption and pivoting towards wireless power supplies through inductors. For most wearable garments intended for long-term use, the batteries must be easily replaceable or rechargeable.
  • Flexibility and stretchability - Smart wearables, especially garments, are susceptible to a great deal of stretching. Flexibility, the basic form factor of wearables, has made flexible printed electronics be actively pursued as an alternative to costly silver threads and yarns sewn into apparels. Depending on the final application, wearable substrates need to strike the right balance between flexibility, stretchability, and stability. In addition to experimenting with new substrates, the industry is currently leveraging medical-grade materials including polyether-based thermoplastic polyurethane (TPU), polyester-based TPU, polyethylene terephthalate (PET), and fabrics such as spandex, nylon, elastane, and cotton. Functional inks are often printed on flexible substrates and as the user wears or moves with the garment, there is a certain amount of stretch that occurs. Therefore, inks need to exhibit acceptable change in resistance with repeatable stretch and recovery cycles.
  • Sealing - Conductive epoxies, typically used to apply components on to circuits, are often not a feasible solution when dealing with wearable applications, as they tend to break under stress. Hence, applying additional components such as surface-mount LEDs and active PCBs can be very challenging. The ability to incorporate electronic components smoothly into apparels whilst ensuring strong adhesion during bending, creasing, and flexing is key to the success of smart wearables.

 In addition, wearables intended for long-term use must be safe to submerge under water without damaging the circuitry, and physically endure multiple wash cycles. Achieving a water-tight seal and protecting the power source from environmental factors is vital for ensuring optimal performance and durability of the device. For electronic equipment, Ingress Protection (IP) rating specifies the degree of protection from solids and liquids including dust and water. Whether it is fusing stretchable materials with thermoplastic-adhesives backing or applying hot-melt adhesives to polyester circuits, thermal bonding is one of the most common sealing approaches in wearable solutions. Pressure sensitive adhesive (PSA) lamination is another approach that requires a medical-grade adhesive to apply a patch directly to the skin of the user. TPU overlaminates, printable insulators, and PET overlaminates are often used for sealing and potting.

The wearable technology industry is migrating towards a “smart system”, a world where all devices from head to toe communicate with each other to create a single ecosystem. As existing technologies and processes evolve, new norms, standards, and specifications for the industry will gradually develop. With a promising future in sight, the widespread adoption and integration of smart wearables in our daily lives is almost inevitable.

By Gerry Gallagher | Nov 15, 2018
GMN sells SuperGraphics to employees

Over the years, GMN has celebrated many triumphs with SuperGraphics, our large format graphics and signage company, including the invention of the bus wrap and claiming the Guinness World Record for largest mural ever made. The SuperGraphics business has long served as a vital part of the GMN business and we have deeply enjoyed the work we produced and the customers we collaborated with in the process. While focusing on and expanding our core business, GMN has decided to sell SuperGraphics to an experienced group of current employees who will foster a bright future for the company.

To learn more about this transaction, read our press release here.

By Steve Baker | Nov 6, 2018
High-volume technical printing equipment

In this second blog of our series on high-volume technical printing, we will be discussing the various screen printing equipment options GM Nameplate (GMN) has available for technical printing. We will examine the different attributes of each type of printing press and assess how they can influence your projects. If you missed our first blog in this series, we encourage you to take a moment to read it here to gain a preliminary understanding of GMN’s technical printing methods and their implications for high-volume programs.

As previously mentioned, there are two main screen printing processes used by GMN for technical printing – sheet-fed and roll-to-roll – and as we’ve already established, roll-to-roll printing is better suited for high-volume technical printing projects. The reasons for why this is will become clearer as we go through the characteristics of GMN’s printing equipment.

Before getting into the specifics, an important concept to understand in general about all the presses is that the run rate is set by the dryer capacity. The attributes of the dryer as well as the project influence the run rate that can be realized. For example, functional inks often require longer to cure, therefore if a technical printing program utilizing functional inks is run on a press with limited drying capacity, it will need to go through the dryer at a slower speed to properly cure. However, if the same project was run on a press with a large drying capacity, it would be able to run at faster speeds since it would be in the dryer for longer. For every new project, the drying parameters must be developed according to that project’s specifications, which ultimately determines speed.

Sheet-fed presses

As with all screen printing equipment, the distinct capabilities and constraints offered by each of GMN’s sheet-fed printing presses determine the viability of the equipment for a potential project. Sheet-fed presses yield varying print area dimensions, for example, from 22” x 30” to 48” x 98”. Another critical feature to be aware of is the run rate for these presses, which on average can range from 160 – 225 impressions per hour. Finally, the dryers that accompany the sheet-fed printing presses at GMN include thermal UV dryers.

Roll-to-roll presses

For roll-to-roll printing, GMN employs four presses with varied capabilities that enable them to fulfill an assortment of technical printing project requirements.

  1. Via printing

    The most noteworthy feature about two of the screen printing presses utilized by GMN for roll-to-roll technical printing is the presses ability to print vias (also known as through-hole printing). When printing vias, after the vias are lasered into the material, ink is then printed on both sides of the roll, forcing the ink through the vias to create a circuit. But the pushing of the ink through the holes leaves excess ink behind on the print bed. If using the sheet-fed method, the operator would have to clean the print bed after every pass, adding additional steps and time to the process. However, GMN’s presses eliminate the need for this added step because they have blotter paper positioned on top of the print bed to absorb all the leftover ink. This blotter paper advances along with the roll of material to ensure that the ink doesn’t smear as the sheet moves forward. In general, these presses print one color at a time, maintain a print area of 20” x 20”, and can accomplish tolerances around .007”. Using UV and thermal dryers approximately four meters in length, the run rate for these presses is about 500-800 impressions per hour.

  2. Tight tolerance printing

    Another roll-to-roll printing press at GMN also only prints a single color at a time, yet it has a print area of 19” x 31”. But the major advantage of this press is printing parts with extremely tight tolerances. This press can reach tolerances within .001” – .002” of the original specifications. To produce these tolerance levels, the press utilizes optical registration cameras to repeatedly establish precise registration for each part and attain the most accurate stacking of ink layers. The machine first pulls the printing image in and then adjusts the screen to achieve a careful stack-up tolerance. In addition, this press uses a 20-foot tower dryer. Tower dryers are beneficial because they make efficient use of their space by having the material serpentine up and down across the body of the equipment, allowing for the parts to stay in the dryer for longer and run at faster speeds. With these elements working together, our tight tolerance printing press offers a run rate of around 200 – 300 impressions per hour.

  3. Efficient run rates & multi-color printing

    The last press at GMN’s disposal offers a print area of 18” x 19.5” and meets tolerances within .007” – .010”. This press’ most significant benefits include its two print stations and substantial drying capacity, which allows it to produce parts at a much higher speed. With both a 40-foot and a 60-foot tower dryer, this press employs dryers that are much larger than our other presses. Again, the tower dryers allow for each part to stay in the dryer for longer, therefore permitting the part to run through the process at a faster rate. The other advantage of this press is that it’s a two-color press. The printing process begins by laying down the first color, followed by the punching of a fiducial next to the image for registration, and then the sheet runs through the first tower dryer. Next, utilizing the registration punch to align with the first ink layer, a second color can be laid down, ending with the sheet going through the second tower dryer. These two capabilities are what make our final roll-to-roll technical printing press the fastest print line at GMN with a run rate of 800 – 1,000 impressions per hour.

When comparing the characteristics of the sheet-fed presses to the roll-to-roll presses, it is apparent why roll-to-roll printing is more suited for high-volume technical printing projects. Not only can these presses achieve much higher run rates, but they can also produce parts at much tighter tolerances and accomplish efficient through-hole printing. With our selection of technical printing equipment, GMN aims to provide our customers with the printing technology that best fits their project’s specific needs. GMN is equipped to accommodate technical printing projects with a vast array of requirements and volumes ranging from low to high. To learn more about our technical printing capabilities, click here.

Lauren Rowles, GMN
By Lauren Rowles | Nov 1, 2018
GMN Halloween

At GM Nameplate, we believe that companies that have fun together, thrive together. Every year, GMN employees have a great time getting into spirit when Halloween rolls around. Once again, GMN celebrated Halloween with style and enthusiasm by showcasing some amazing team and individual costumes, as well as inventive decorations. We hope you enjoy this peek into a couple of the costumes that were featured.

Halloween celebration 2018Halloween 2018

Rich Smylie, GMN
By Richard Smylie | Oct 31, 2018
Embossed nameplate manufactured at GMN

Embossing, the process of raising logos or graphic images, is a great way to augment the visual impact of any component. The tactile feel realized as a result of the raised design reinforces the aesthetic appeal of a product. Embossing is one of the most versatile metal decoration techniques employed by a wide array of industries.

While there are different ways to emboss a component, how do you ensure the utmost precision while embossing decorated parts? How can the varying tolerances of the decoration process accurately align to a mechanical embossing operation? The answer to all these questions lies in our newest video. By offering a glimpse into the functioning of a Spartanics press, this video will clearly demonstrate the advantages of adding an optical registration system to the embossing process.

To illustrate the registration challenge imposed by any decoration process on embossing, let’s delve further deeper into the HySecurity nameplate seen the video. During the screen printing process, when a squeegee travels across the metal sheet, the deposition tolerance between the images can vary as much as 0.005” per inch. As such, an image from the leading to the trailing edge of a 24” sheet can vary around 0.12” (0.005” x 24”).  Conversely, the mechanical action of the embossing die does not exhibit this variation. So, when an operator feeds the metal sheet to the embossing machine, the tool cannot align accurately with the varying deposited images, sometimes creating an off-registered embossed part.

However, this alignment challenge can be overcome by adding an optical registration system to the embossing process and depositing a corresponding registration mark next to each design. In doing so, when the nameplate is being screen-printed, a registration mark is put down at the same time that correlates to the center of each artwork. At the embossing stage, a Spartanics press uses an optical eye to locate the mark and make necessary adjustments to gain alignment between the printed graphic and the tool pitch, resulting in perfect embossing. Since the press automatically calibrates the location of every individual artwork and advances the sheet through the press, the process is ideal for parts that demand extremely tight registration. Resulting in extreme precision and accuracy, optical registration embossing provides a high degree of efficiency and consistency. The Spartanics press overcomes tolerance variation that the actuator-fed emboss press falls short of.

A Spartanics press can emboss a range of metals and alloys including stainless steel and aluminum. While the thickness of the material processed is directly related to the press tonnage of the machine, the embossing height depends on various factors such as the thickness, temper, and alloy of the metal. Since certain alloys have greater elongation characteristics, they can be embossed to a greater height as compared to the others. The Spartanics press can emboss, deboss (recessed images), or perform both the processes simultaneously. It is well suited to emboss parts that are either screen, pad, or litho printed.

Depending on the design intent, embossed parts can undergo secondary processes like forming, blanking, and die-cutting at a later stage. To see how the Vforce nameplate, featured in the video, went through diamond carving after it was embossed, watch our previous video here. Over the last few decades, GMN has worked with several leading companies including Ford, Dell, Estée Lauder, and DW drums to create clean and crisp embossed parts. To watch the Spartanics press in action, click on the video below.

Pages