Automotive Blog

You are now viewing GMN Automotive blogs. To view all GMN Blogs click here.
Debbie-Anderson-GMN
Dead front printing
By Debbie Anderson Jul 07, 2020
An image of a car dashboard

When developing a user interface, it’s important to consider what the user needs to see during an interaction. For certain applications, calling attention to an indicator or warning light while keeping others hidden can be crucial. For situations where eliminating distractions, keeping a clean aesthetic, and emphasizing certain switches or indicators is imperative, look no further than dead front printing.

What is dead front printing? 

Dead front printing is the process of printing alternate colors behind the main color of a bezel or overlay. This allows indicator lights and switches to be effectively invisible unless actively being backlit. Backlighting can then be applied selectively, illuminating specific icons and indicators. Unused icons stay hidden in the background, calling attention solely to the indicator in use.

Printing methods and substrates for dead front overlays 

There are two ways to illuminate a dead front overlay, each of which requires a different printing approach. The first method is to use LEDs directly behind each indicator or icon. This approach simplifies the printing process (since LEDs provide the colors, the printing generally employs a single color behind each button). Alternatively, different translucent colors can be printed selectively behind various indicators. With the use of translucent colors, almost any backlighting method can be used since it’s the ink behind the iconography that gives the indicator its hue.

Diffusers are often applied behind the lights to maintain consistency throughout an overlay. Particularly with LEDs, diffusers can help eliminate hotspots, where one part of the letter or icon appears much brighter than other parts. Once a part is ready, a standard is made, so any future overlays or alterations are readily available and can easily be matched to the standard.

While dead front printing is technically possible with almost any colored bezel or overlay, it’s generally seen on overlays and bezels printed with neutral colors. Typically printed on polycarbonate, polyester, or glass, colors such as white, black, or gray tend to hide unused indicators the most effectively. 

Developing dead front overlays with GMN

When developing a new dead front overlay, experimentation is often necessary to get the perfect look. Given the breadth of possible lighting options, ink densities, color palates, and substrates, maintaining a consistent look across an overlay often requires several prototypes to be developed. At GMN, we have a state-of-the-art color lab, a light lab, and a full printing team that works in tandem to match and perfect colors. Within our color lab, spectrophotometers and spectroradiometers are frequently utilized to get specific color values necessary for matching. Our light lab will then work with the printing team to narrow down the exact mixture and density of ink necessary for the specific substrate and required look.

Dead front printing is an excellent option for a wide variety of applications such as automotive dashboards, aerospace indicators, and touch user interfaces. Want to learn how dead front printing can help your product be more efficient while ensuring a clean aesthetic? Schedule a consultation with our experts.

Projected capacitive touchscreens
By Jim Badders Jun 12, 2020
Finger touching capacitive display

In our previous blog, we talked about the different kinds of resistive touchscreens and how they compare. While resistive screens offer a high level of versatility, another one of the most widely used touchscreen varieties is the projected capacitive touchscreen. Below, we’ll be discussing the key features and advantages that make projected capacitive technology such a popular touchscreen option.

What are projected capacitive (PCAP) touchscreens?

In contrast to resistive touchscreens, projected capacitive touchscreens don’t require any physical pressure to activate. Rather, they rely on projecting a capacitive field through the display. This field is then disrupted by electrical impulses from the human body when the cover glass is touched. PCAP touchscreens have grown immensely in popularity over the last several years and are primarily used in smartphones, monitors, and any other device that requires both durability and precision.

Advantages of projected capacitive touchscreens:

Originally thought of as expensive and unreliable, the technology for these touchscreens has consistently improved. Over the years, the cost of manufacturing has come down significantly enough to rival that of many resistive options. The specificity to which the input sensitivity can be tuned has also become advanced enough to reject dust, oil, grease, gels, and other agents, while still effectively gauging user input. This makes them ideal for industries where high cleanability and input precision is required.

Since the input is simply a disruption to the capacitive field, PCAP screens allow for multi-touch functionality, such as zooming, rotating, and more. However, due to the reliance on electrical impulses for input, there are limits to what can be used to activate it. The sensitivity can be tuned to register styluses and gloves, but the item used has to be able to successfully disrupt the capacitive field. This may be less ideal than resistive touchscreens for certain applications, where it may be necessary to use other objects to input information.

Due to PCAP touchscreens not relying on separate panels making contact, damage to the cover glass or acrylic generally won’t affect user input, making them durable enough to handle nearly infinite activations. Because of their construction, PCAP touchscreens also display an extremely high-clarity image. Since the layers are bonded together with optically clear adhesive (as opposed to with an air gap between layers as with resistive touchscreens), the displayed image has a high level of light transmission and is very clear. Coupled with rarely losing calibration, they are durable and remain precise throughout their lifespan.

Ultimately, the decision to use either a resistive or projected capacitive touchscreen comes down to the application. Regardless of what type of user interface system you’re looking for, GMN’s experts can help you find the perfect touchscreen for your next product. Find out more about our display integration capabilities or set up a consultation with our experts.

Types of resistive touchscreens
By Jim Badders Jun 03, 2020
Finger on touchscreen

In today’s world, touchscreens are omnipresent and expected by users on almost any interface system. Widely used in a variety of industries, there are many different types of touchscreen constructions available. Once you have decided to use a touchscreen, there are important design considerations to take into account. How should the touchscreen function when interacted with? Does it need to be durable enough for heavy usage and millions of actuations? Should it be incredibly precise and not require any calibration? Whether your biggest concern is cost, durability, or functionality, there are many different options.

The most commonly used touchscreens broadly fall into two categories: resistive and capacitive. In this blog, we will be focusing solely on the different types of resistive screens and their core advantages. 

What are resistive touchscreens?

Resistive screens are made up of two conductive and transparent layers: a flexible top panel (typically made out of polyester or PET) and a rigid bottom panel. An adhesive spacer lies between the two layers. When pressure is applied to the top panel, it makes contact with the panel below. This contact interrupts a continuous current flowing between the panels, where a grid of horizontal and vertical lines allows a controller chip to know what was touched and gauge input accordingly. Since the input is calculated through physical pressure causing the two layers to make contact, resistive touchscreens work well for any gloved or stylus usage.

Types of resistive touchscreens:

  • 4-wire resistive touchscreen: The least expensive of all of the touchscreen options, 4-wire touchscreens are typically found in games, toys, and other inexpensive touchscreen applications. Since the accuracy is based on the top panel interacting with the bottom panel, any damage to the top panel will cause the accuracy to degrade. This generally makes them less reliable after heavy usage or many actuations. 4-wire touchscreens also have to be calibrated frequently as they get used to ensure that they register the correct input.
     
  • 8-wire resistive touchscreen: Very similar to 4-wire in durability and usage, the only difference with an 8-wire screen is additional wiring. This additional wiring keeps the screen more precisely calibrated and allows it to auto-calibrate, meaning that it requires less maintenance to maintain accuracy than its 4-wire counterpart.
     
  • 5-wire resistive touchscreen: Despite the similar name, 5-wire touchscreens are significantly different from the 4-wire and 8-wire variations. 5-wire screens measure input from the bottom panel only, not in tandem with the top panel. This means that regardless of any damage to the top layer, the usage of the touchscreen and accuracy of input won’t degrade. This makes them more durable and they generally last through many more actuations than other resistive options.
     
  • Resistive multi-touch screen (RMTS): Resistive multi-touch screens (RMTS) are the only type of resistive screens that allow for multiple-touch functionality, such as pinching, zooming, or rotating. Similar to 5-wire screens, the bottom layer is the only layer that measures input, meaning that they’re more durable and well-suited for a rugged environment. EMI mesh can also be applied to the front surface, protecting internal components from outside electrical activity. This, in combination with the durability, makes them favorable for military and industrial applications.

Resistive touchscreens are a great option for a wide variety of applications and industries. To learn more about which touchscreen option is right for your next product, take a look at our website

Video: Ford steering wheel badge
By Richard Smylie Sep 12, 2019
Ford steering wheel badge

Ford Motor Company, a leader in the automotive industry, was remodeling its 2020 Ford Explorer SUV and one of the main decorative accents they were looking to refresh was their Class-A steering wheel badge. Since the Explorer is one of Ford’s flagship vehicles, Ford wanted the badge to be built to world-class standards, capturing both the visual craftsmanship and performance functionality of the design intent. Ford chose GMN Automotive (GMN) for its industry-leading craftsmanship, design execution, and functionality of the coatings.

Our latest video illustrates the many steps involved in the manufacturing of the steering wheel badge. The process begins with a coil of aluminum being cut into 24”x 20” sheets. The sheets are washed in an alkaline bath and dried to ensure that they are clean, thereby preventing any issues in the subsequent production steps. Next, the sheets are fed into a roll coater that deposits a primer coating. It not only promotes better ink adhesion but also helps protect the finished badge from any environmental challenges it will face on the steering wheel. The sheets are then baked in a flatbed oven to partially cure the basecoat. The aluminum sheets are sent from the oven to the screen printer, where the iconic Ford blue color is deposited onto them along with a corresponding small bullseye registration mark that is utilized during embossing and blanking at a later stage. 

As seen in the video, the sheets are sent back to the roll coater where a topcoat is applied. This shields the primer coating and ink below, resulting in enhanced durability and depth of field for the logo. The fully decorated sheets are laminated with a protective film to minimize handling and tool-related issues. After lamination, the sheets are moved to fabrication where an optical registration system aligns with the printed bullseye mark to accurately emboss the Ford logo. The logo and the encircling racetrack are raised by .003”.

Next, the decorated and embossed sheets are blanked and formed to size and shape in a progressive tool. The machine utilizes the same registration mark employed in the embossing process to ensure extreme precision and uniformity. In the end, the badges undergo a rigorous visual inspection to guarantee that they are free of non-conformities before they are securely packaged and shipped out.  

To see the entire production process of the Ford steering wheel badge from start to finish, watch our video below. 

Patrick Wu
Steering wheel badge for Qiantu K50
By Patrick Wu Jun 06, 2019
Qiantu K50 steering wheel badge

Qiantu Motors, a China-based automotive company, is at the forefront of the development and manufacturing of New Energy Vehicles (NEV) in China. Making waves in the global automotive market, the Qiantu K50 model is China’s first electric supercar.  

When Qiantu Motors was bringing the K50 to life, they approached GMN to create a steering wheel badge. Looking for a distinguishing decorative solution, they wanted the badge to resonate with the clean and contemporary style of the sportscar. As the badge would sit on the steering wheel, merely a few inches away from the driver, it was extremely crucial to have an eye-catching design with crisp finishing. From aluminum to plastic badges, GMN proposed different solutions to match the project needs and requirements. Qiantu Motors was instantly drawn to one solution that brought together two of GMN’s visually striking capabilities - 3D electroform and in-mold decoration (IMD).

After a few rounds of fine-tuning the details, GMN established the final look of the badge that was comprised of two distinct parts: a dragonfly logo and a body. The dragonfly was achieved through 3D electroform, an electroplating process where nickel and chrome were plated onto a bronze mold to create the three-dimensional structure. Electroforming enabled GMN to construct a detailed, elegant, jewel-like logo that is unobtainable by any other manufacturing or decoration process. Merging aesthetics with functionality, the stainless steel logo offers superior resistance to corrosion and dents. The intricate, grooved patterns seen on the dragonfly fitted seamlessly with Qiantu’s needs.

The body of the badge was realized through the unique process of in-mold decoration. First, a flat sheet of polycarbonate was screen printed with a checkered pattern and a clean silver rim on the edges. Then, the decorated sheet was physically fused into injection molded plastic, forming a rigid, three-dimensional unibody. Suited for high-wear applications, in-mold decoration imparts unparalleled durability and strength to the badge. It not only makes the badge scratch resistant, but also protects the printed graphics from fading over time. 

The carbon fiber unibody and the dragonfly logo were assembled together with a two-part assembly kit. Registration marks on both parts ensured the precise registration of the two distinct components. The combination of electroform and IMD enables the badge to withstand fluctuating temperatures and ultraviolet rays for elongated periods of time. GMN’s China Division rolled out an automotive badge that was not only visually appealing, but also resistant to chemicals, heavy impacts, and abrasion. Before making its way to the steering wheel of the K50, the badge needed to successfully pass a series of rigorous testing including collision, thermal shock, and environmental tests.

The entire manufacturing solution for the K50 badge was conceived and fabricated by GMN’s automotive engineering group. As NEV startups continue to mushroom in China, we look forward to partnering with several other companies to offer truly unique decorative capabilities to fit their needs. To learn more about GMN’s  automotive trims, accents, and badging solutions, visit our GMN Automotive website here.

Video: What is progressive die-cutting?
By Richard Smylie May 31, 2019
Nissan

Tooling a part to size remains integral to the metal fabrication process. While there are several tooling possibilities including steel-rule and rotary die-cutting, laser and water jet cutting, and compound tools, which method do you employ for efficiently performing multiple operations on a metal component? The answer lies in our newest video below. By offering a peek into the functioning of progressive dies, this video clearly illustrates the many advantages of utilizing progressive die-cutting to drive productivity.

Progressive stamping process

To cement our understanding of progressive die-cutting, let’s delve deeper into the Nissan automotive badge featured in the video. Made from aluminum, the badge requires a flat, coiled metal strip to undergo blanking, pre-forming, forming, lancing, debossing, and cutting. If we were to perform each of these operations individually with separate stand-alone tools, it would not only be tedious, but also time-consuming and expensive. Progressive die-cutting, also referred to as progressive stamping, is an effective and efficient way of performing multiple operations under a single die set. A die set comprises of multiple individual dies (or stations) that sequentially perform the desired processes on the metal. The minimum and maximum number of stations in a die set is dictated by the design and part geometry.

Progressive die-cutting fabrication process

The fabrication process begins with mounting the die set on the stamping press and feeding the metal in a coil or sheet form to the press. Registration marks or holes on the metal allow for its precise alignment with the die’s progression. Even the slightest mis-orientation of the substrate with the die set can negatively impact the entire output and hence, remains a crucial factor in the die-cutting fabrication process. As you can see in the video, the press progressively transfers the metal sheet in the web from one die station to the next through an automated feeder mechanism. The six individual dies in the die set perform the following functions:

  • Die #1 - Cuts the outer circular shape of the badge
  • Die #2 - Lances the part to relieve the metal, thereby preventing it from being deformed in the later stages
  • Die #3 - Pre-forms the middle portion of the badge
  • Die #4 - Pre-forms the edges of the badge
  • Die #5 - Cuts out holes from the center of the badge
  • Die #6 - Debosses, forms, and cuts out the badge, all at the same time

At the end of the progression, the web and finished parts are separated from one another by a lance operation and the final parts slide down a conveyor belt. An operator at the end of the belt inspects and organizes the output. Once the progressive die-cutting process is completed, the Nissan badge undergoes anodizing and pad printing. Anodizing is an electro-chemical process that converts the aluminum surface into a durable, corrosion-resistant, and high-energy surface. Pad printing, an offset printing technique, transfers black ink into the recessed letters of the anodized badge. To learn more about pad printing, learn our blog Fundamentals of pad printing.

Advantages of progressive die-cutting

Suited for high production volumes, progressive stamping is particularly favored for its efficiency and reduced cycle times. The form, profile, and size of the part play a critical role in determining it’s fit for progressive stamping. This cutting method is ideal when project volumes are high and registration requirements are feasible. To watch the progressive die-cutting press in action, watch our video here.

 

Video: Fundamentals of pad printing
By Richard Smylie Dec 18, 2018
Custom Pad Printing

Pad printing is an offset printing process where ink is transferred from a cliché to the required component via a pad. Bringing together a blend of consistency, repeatability, and durability, pad printing can help you achieve intricate patterns and designs. While most decorative techniques such as screen and lithographic printing require a flat surface, pad printing is one of the very few processes that is well suited for decorating gently curved, irregular, textured, and/or cylindrical surfaces. Predominantly seen in the automotive, electronics, appliance, personal care, and medical industries, pad printing is often chosen for applications that will endure significant handling and need to withstand the test of time.

Custom pad printing process 

Our latest video was created to not only equip you with the essentials of pad printing, but also to walk you through the step-by-step pad printing process.

  1. The artwork is etched onto the cliché (flat plate), and ink is deposited into the etched recess.
  2. A silicone pad picks up the inked image and descends onto the part to transfer a clean, crisp, and lasting image.
  3. The pad is pressed on a polyester film to remove any excess ink. Comprising of a low-tack pressure-sensitive adhesive, the polyester film removes any residual ink from the pad prior to the next printing cycle.

From standard to programmable multi-axis printers, the video below offers a glimpse into the different pad printing presses utilized at GM Nameplate (GMN). Armed with a rotating fixture, the programmable multi-axis printer is capable of numerous hits in multiple color combinations on different axes, all in a single set-up. This capability eliminates the need to transfer the part manually from one station to the other, resulting in significant time and cost savings.

Pad printing on different substrates

Pad printing is compatible with a broad range of substrates including stainless steel, polycarbonate, polyethylene terephthalate (PET), glass, polyvinyl chloride (PVC), acrylic, and acrylonitrile butadiene styrene (ABS). Very few plastic materials such as low (LDPE) and high-density polyethylene (HDPE), and polypropylene aren’t cohesive with pad printing inks and require a pre-treatment to ensure good adhesion.

Pad printing considerations

For every project, custom fixtures are designed and built to register the component to the pad printing head. The alignment of the ink pad with respect to the size and geometry of the part is specifically engineered to ensure exact registration. As seen with the Nissan badge in the video, the pliability of the silicone pad allows for printing with extreme precision, preventing the ink from coming in contact on the inside walls of the recessed letters. Maintaining the viscosity of the ink is extremely crucial to ensure the ink deposition accuracy and consistency. While the ink needs to be fluid enough to deposit on the substrate, it should not bleed out of the impression area. Thinners and adhesion promoters can be added to inks to achieve the desired viscosity level. Most of the inks used for pad printing at GMN are air-dried and are usually cured in conveyor ovens. Several other factors including the shape, material and durometer of the pad, location and color of the etched artwork, and tilt of the ink pad, are critical to the success of any project.

To see the pad printing process in action, watch our video here.

Video: What is optical registration embossing?
By Richard Smylie Oct 31, 2018
Embossed metal nameplate

Embossing, the process of raising logos or graphic images, is a great way to augment the visual impact of any component. The tactile feel realized as a result of the raised design reinforces the aesthetic appeal of a product. Embossing is one of the most versatile metal decoration techniques employed by a wide array of industries.

While there are different ways to emboss a component, how do you ensure the utmost precision while embossing decorated parts? How can the varying tolerances of the decoration process accurately align to a mechanical embossing operation? The answer to all these questions lies in our newest video that clearly demonstrates the advantages of adding an optical registration system to the embossing process.

To illustrate the registration challenge imposed by any decoration process on embossing, let’s delve further deeper into the HySecurity nameplate seen the video. During the screen printing process, when a squeegee travels across the metal sheet, the deposition tolerance between the images can vary as much as 0.005” per inch. As such, an image from the leading to the trailing edge of a 24” sheet can vary around 0.12” (0.005” x 24”).  Conversely, the mechanical action of the embossing die does not exhibit this variation. So, when an operator feeds the metal sheet to the embossing machine, the tool cannot align accurately with the varying deposited images, sometimes creating an off-registered embossed part.

However, this alignment challenge can be overcome by adding an optical registration system to the embossing process and depositing a corresponding registration mark next to each design. In doing so, when the nameplate is being screen-printed, a registration mark is put down at the same time that correlates to the center of each artwork. At the embossing stage, the press uses an optical eye to locate the mark and make necessary adjustments to gain alignment between the printed graphic and the tool pitch, resulting in perfect embossing. Since the press automatically calibrates the location of every individual artwork and advances the sheet through the press, the process is ideal for parts that demand extremely tight registration. Resulting in extreme precision and accuracy, optical registration embossing provides a high degree of efficiency and consistency. The press overcomes tolerance variation that the actuator-fed emboss press falls short of.

The press can emboss a range of metals and alloys including stainless steel and aluminum. While the thickness of the material processed is directly related to the press tonnage of the machine, the embossing height depends on various factors such as the thickness, temper, and alloy of the metal. Since certain alloys have greater elongation characteristics, they can be embossed to a greater height as compared to the others. The press can emboss, deboss (recessed images), or perform both the processes simultaneously. It is well suited to emboss parts that are either screen, pad, or litho printed.

Depending on the design intent, embossed parts can undergo secondary processes like forming, blanking, and die-cutting at a later stage. To see how the Vforce nameplate, featured in the video, went through diamond carving after it was embossed, watch our previous video here. Over the last few decades, GMN has worked with several leading companies including Ford, Dell, Estée Lauder, and DW drums to create clean and crisp embossed parts. To watch the embossing process, click on the video below.

Video: Diving deep into Magni-lens doming
By Richard Smylie Sep 28, 2018
Magni-lens doming

Versatile and durable, magni-lens doming is a clear two-part urethane development which when applied to a substrate, creates a self-healing dome that stands 0.06” (1.5mm) tall. The most unique feature of Magni-lens doming is that it functions as both a visual and performance enhancement. Visually, it adds richness and a depth of field to the graphics below, and from a performance standpoint, it can withstand the most extreme environments. 

Filmed at our Monroe, NC Division, our latest video will bring you a step closer to the Magni-lens technology. The video not only provides a glimpse into the process of creating the urethane dome, but also illustrates the broad spectrum of industries and products that have embraced magni-lens doming.

To initiate the doming process, the parts are staged on sheets so that they register precisely with the doming machine’s dispensing nozzles. As seen in the video, the dome is created with a nozzle or a hose that meters out a clear urethane coating. As the nozzle glides over the part, it dispenses the urethane polymer across the entire surface. The parts are always placed at a well-maintained distance from each other to avoid ruining the neighboring part in case of an overspill. While the featured Excel dryer part in the video has seven nozzles operating at once, different projects require different settings. Multiple nozzles correspond to the number of parts that are getting domed at a given time and the machine at GMN’s Monroe, NC Division has the capacity to operate up to 24 nozzles simultaneously.

After the urethane is dispensed, the part is inspected to ensure that the coating has traveled all the way up to the edges of the part. The viscus resin gradually “wets out” the entire surface and the part is placed on leveling pads to air dry. Although the coating starts to harden with the “skinning of the urethane surface” in about four hours, it technically takes about a week for the part to be completely cured. Selective doming can also be achieved by using a dam to contain the resin to a specific area. The entire process of Magni-lens doming is performed in a semi-clean room to mitigate dust and foreign particles from entering the water-clear dome.

The size of the part determines the amount of resin dispensed. Since parts come in varying sizes, each of them requires differing amounts of coating. The machine is uniquely programmed for every project, where it measures the length of the part to determine the space necessary between the parts in the set-up stage. Other elements such as the pour speed and the length to which the nozzle travels vertically above the part are also customized.  

The resulting magni-lens dome construction is extremely robust, chemical and moisture resistant, easy to clean and sanitize, and doesn’t deform with heat and fluctuating temperatures. Its versatility, functionality, and compatibility to adhere to a wide range of substrates including polycarbonate, polyester, vinyl, aluminum, and stainless steel, makes it a great choice for both indoor and outdoor applications. Seen widely in industries like automotive, appliances, electronics, and medical, the video will give you a glance into some of nameplates created by GMN over the past few decades.

To see the doming process in action, check out our video below.

Quick-turn prototyping capabilities at GMN
By Jason Herndon Aug 08, 2018
Prototyping solutions by GMN

When it comes to custom manufacturing, prototyping remains an integral part of the design process. Whether you are testing the fit, form, and functionality of a new product, evaluating the feasibility of a unique material, or merely experimenting with novel ideas and concepts, prototyping services enable us to venture into new territories. The prototyping services at GM Nameplate (GMN) not only provide quick-turn solutions but also offer design support to help customers navigate a path towards production.

The prototyping solutions offered by GMN can be briefly divided into the following three types -

1) Quick-turn prototypes

Quick-turn prototypes, also known as rapid concept prototypes, put the focus on speed. This program aims to deliver a product into the customer’s hands as quickly as possible, which in turn takes them a step closer to production. Customers can assess multiple design considerations with accelerated lead times and reduced costs compared to full production parts. While rapid concept prototypes are not intended for qualification testing, they facilitate customers to experiment, refine, evaluate, and validate designs while making swift iterations. So, if you are looking to assess different material options for a gasket or compare a satin finish versus a gloss finish, then rapid concept prototyping is the way to go!  

GMN has a dedicated product development team and manufacturing equipment that operates outside of regular production schedules, which helps us stay agile and accommodate varied needs. While developing prototypes, GMN utilizes digital printing for parts that will often use alternate printing processes in final production to remain cost and time efficient. Similarly, for die-cut prototypes, GMN often uses materials specified for the final product, but utilizes laser cutting and other “soft tooling” methods before transitioning to hard tooling for production. This allows customers to compare multiple design options without investing in the appropriate production tooling.

2) Conceptual development prototypes

Conceptual development prototypes focus on translating concepts into concrete solutions. This development process optimizes ideas to achieve a viable product by evolving designs towards production-friendly solutions. By letting us perform quick risk mitigation testing on new materials or designs on the front-end, it reduces unexpected challenges later in the design process. While, this prototyping solution often comes into play while working with unique materials, it can also be helpful if a design is ahead of the technology curve. When a customer approaches GMN with unique material, we can address the unknowns associated with processing the material. This includes testing ink adhesion, verifying substrate compatibility with the manufacturing processes, optimizing processing parameters, and testing new design applications before engaging in larger production runs.

GMN’s customers bring a variety of cutting-edge products to market and the complex nature of these projects requires a focused and methodical approach to development. Conceptual development prototypes are often accompanied by a formal development proposal including a statement of work with discrete milestones that allow GMN to periodically regroup with its customers to determine the design or processing solution that best meets their needs.

3) Pre-production development prototypes

Pre-production development prototypes bring a design concept to a repeatable and robust production solution. Pre-production prototyping ensures that regulatory requirements, including Design Failure Mode and Effect Analysis (DFMEA), Process Failure Mode Effects Analysis (PFMEA), or Production Part Approval Process (PPAP), are met. Pre-production development prototypes emphasize on establishing process capabilities, improving yields, and optimizing designs for high-volume manufacturing. Since this approach utilizes all of the standard full-scale production equipment and process controls, it is best suited for products that are ready to transition into volume production and can be used for purposes such as final qualification and testing.

To learn more about our rapid prototyping lead times and pricing, visit our rapid prototype capabilities page to learn more or get started on your next product.