Automotive Blog

You are now viewing GMN Automotive blogs. To view all GMN Blogs click here.
Video: Fundamentals of pad printing
By Richard Smylie Jan 21, 2021
Off-set pad printing process

Pad printing is an offset printing process where ink is transferred from a cliché to the required component via a pad. Bringing together a blend of consistency, repeatability, and durability, pad printing can help you achieve intricate patterns and designs. While most decorative techniques such as screen and lithographic printing require a flat surface, pad printing is one of the very few processes that is well suited for decorating gently curved, irregular, textured, and/or cylindrical surfaces. Predominantly seen in the automotive, electronics, appliance, personal care, and medical industries, pad printing is often chosen for applications that will endure significant handling and need to withstand the test of time.

Custom pad printing process 

Our latest video was created to not only equip you with the essentials of pad printing, but also to walk you through the step-by-step pad printing process.

  1. The artwork is etched onto the cliché (flat plate), and ink is deposited into the etched recess.
  2. A silicone pad picks up the inked image and descends onto the part to transfer a clean, crisp, and lasting image.
  3. The pad is pressed on a polyester film to remove any excess ink. Comprising of a low-tack pressure-sensitive adhesive, the polyester film removes any residual ink from the pad prior to the next printing cycle.

From standard to programmable multi-axis printers, the video below offers a glimpse into the different pad printing presses utilized at GM Nameplate (GMN). Armed with a rotating fixture, the programmable multi-axis printer is capable of numerous hits in multiple color combinations on different axes, all in a single set-up. This capability eliminates the need to transfer the part manually from one station to the other, resulting in significant time and cost savings.

Pad printing on different substrates

Pad printing is compatible with a broad range of substrates including stainless steel, polycarbonate, polyethylene terephthalate (PET), glass, polyvinyl chloride (PVC), acrylic, and acrylonitrile butadiene styrene (ABS). Very few plastic materials such as low (LDPE) and high-density polyethylene (HDPE), and polypropylene aren’t cohesive with pad printing inks and require a pre-treatment to ensure good adhesion.

Pad printing considerations

For every project, custom fixtures are designed and built to register the component to the pad printing head. The alignment of the ink pad with respect to the size and geometry of the part is specifically engineered to ensure exact registration. As seen with the Nissan badge in the video, the pliability of the silicone pad allows for printing with extreme precision, preventing the ink from coming in contact on the inside walls of the recessed letters. Maintaining the viscosity of the ink is extremely crucial to ensure the ink deposition accuracy and consistency. While the ink needs to be fluid enough to deposit on the substrate, it should not bleed out of the impression area. Thinners and adhesion promoters can be added to inks to achieve the desired viscosity level. Most of the inks used for pad printing at GMN are air-dried and are usually cured in conveyor ovens. Several other factors including the shape, material and durometer of the pad, location and color of the etched artwork, and tilt of the ink pad, are critical to the success of any project.

To see the pad printing process in action, watch our video here.

Understanding the diamond carving process
By Richard Smylie Jan 07, 2021
Diamond carved nameplate manufactured at GMN

Diamond carving, also known as diamond drag engraving, is a common metal decoration technique that enhances metal components by adding a unique texture. Performed at the back-end of the manufacturing process, this technique creates extremely fine, sharp, and crisp lines on an embossed aluminum surface, which cannot be achieved through any other decoration process. These deeply carved lines on the metal surface also provide a tactile feel, further augmenting the appearance of the component.

Decorative enhancements if any, such as screen printing or brush finishing, are always applied to the metal before the carving process. Once the aluminum sheet is decorated, the area to be diamond carved is embossed or raised to a height ranging between 0.015” to 0.018”. The embossed sheet is then cut into strips and held in-position on a flatbed table by vacuum. The strips are lubricated with oil to enable smooth and uniform engraving of the metal without galling. The strips are fed into a machine that consists of a large 12” rotating wheel, also referred to as the platinum. A small industrial-grade diamond chip, approximately 0.125” in diameter, is mounted to the platinum. As the wheel spins, the diamond chip abrades the aluminum surface with every rotation, thereby creating parallel lines at a depth of 0.003”. Diamond, being the hardest mineral, works flawlessly to create the desired pattern. In addition, the height of the wheel from the flatbed table can be adjusted vertically to compensate for metals with varying thicknesses and/or embossing heights.    

The spacing between the lines is determined by the speed of the wheel. The slower the speed, the broader the gap between each line, and the faster the speed, the lesser the gap. The number of lines per inch and the angularity of the lines is often customized according to the design intent. The texture or pattern can vary from extremely fine textures that create a subtle shimmer to coarse lines that add a more jagged look.

While diamond carving has been a popular technique for several decades, GM Nameplate (GMN) brings a creative twist to the process. GMN’s expertise and capabilities allow you to apply a layer of transparent ink of any color to the diamond-carved surface. It not only adds a unique look but also retains the beauty and texture of diamond carving. The ink is always transparent to enable one to see the scribed lines below. Once the ink is screen printed, the ink is cured by baking the component in strip form.

Seen largely on electronics and handheld appliances, GMN has developed diamond-carved nameplates for numerous companies including Mitsubishi, Philips, Bose, and Lincoln. To see the diamond carving process in detail along with the various textures, patterns, and looks you can achieve with his metal decoration technique, watch our video below. 

Quick-turn prototyping capabilities at GMN
By Jason Herndon Jan 05, 2021
Prototyping solutions by GMN

When it comes to custom manufacturing, prototyping remains an integral part of the design process. Whether you are testing the fit, form, and functionality of a new product, evaluating the feasibility of a unique material, or merely experimenting with novel ideas and concepts, prototyping services enable us to venture into new territories. The prototyping services at GM Nameplate (GMN) not only provide quick-turn solutions but also offer design support to help customers navigate a path towards production.

The prototyping solutions offered by GMN can be briefly divided into the following three types -

1) Quick-turn prototypes

Quick-turn prototypes, also known as rapid concept prototypes, put the focus on speed. This program aims to deliver a product into the customer’s hands as quickly as possible, which in turn takes them a step closer to production. Customers can assess multiple design considerations with accelerated lead times and reduced costs compared to full production parts. While rapid concept prototypes are not intended for qualification testing, they facilitate customers to experiment, refine, evaluate, and validate designs while making swift iterations. So, if you are looking to assess different material options for a gasket or compare a satin finish versus a gloss finish, then rapid concept prototyping is the way to go!  

GMN has a dedicated product development team and manufacturing equipment that operates outside of regular production schedules, which helps us stay agile and accommodate varied needs. While developing prototypes, GMN utilizes digital printing for parts that will often use alternate printing processes in final production to remain cost and time-efficient. Similarly, for die-cut prototypes, GMN often uses materials specified for the final product but utilizes laser cutting and other “soft tooling” methods before transitioning to hard tooling for production. This allows customers to compare multiple design options without investing in the appropriate production tooling.

2) Conceptual development prototypes

Conceptual development prototypes focus on translating concepts into concrete solutions. This development process optimizes ideas to achieve a viable product by evolving designs towards production-friendly solutions. By letting us perform quick risk mitigation testing on new materials or designs on the front-end, it reduces unexpected challenges later in the design process. While this prototyping solution often comes into play while working with unique materials, it can also be helpful if a design is ahead of the technology curve. When a customer approaches GMN with unique material, we can address the unknowns associated with processing the material. This includes testing ink adhesion, verifying substrate compatibility with the manufacturing processes, optimizing processing parameters, and testing new design applications before engaging in larger production runs.

GMN’s customers bring a variety of cutting-edge products to market and the complex nature of these projects requires a focused and methodical approach to development. Conceptual development prototypes are often accompanied by a formal development proposal including a statement of work with discrete milestones that allow GMN to periodically regroup with its customers to determine the design or processing solution that best meets their needs.

3) Pre-production development prototypes

Pre-production development prototypes bring a design concept to a repeatable and robust production solution. Pre-production prototyping ensures that regulatory requirements, including Design Failure Mode and Effect Analysis (DFMEA), Process Failure Mode Effects Analysis (PFMEA), or Production Part Approval Process (PPAP), are met. Pre-production development prototypes emphasize on establishing process capabilities, improving yields, and optimizing designs for high-volume manufacturing. Since this approach utilizes all of the standard full-scale production equipment and process controls, it is best suited for products that are ready to transition into volume production and can be used for purposes such as final qualification and testing.

To learn more about our lead times and pricing, visit our rapid prototyping capabilities page or request a free design consultation to get started on your next product.

Glass printing techniques
By Jim Badders Dec 10, 2020
Screen printing on glass

To ensure the success of any glass-printing application, there are numerous factors that go under consideration such as the glass type, inherent tint of the glass, ink type, ink color, curing process, and environmental conditions. However, one crucial factor that needs to be determined is the print method. Glass can be printed on using one of the three techniques - screen printing, digital printing, or frit printing. While all these methods support different shapes, sizes, thicknesses, types of glasses, and allow the use of multiple colors, there are unique pros and cons that distinguish them.

Screen printing on glass

Well-suited for a wide range of applications, screen printing is the most cost-effective and most dominantly used glass printing technique. It primarily utilizes two types of inks: enamel inks and UV-cured inks, both offering good opacity. UV-cured inks offer a larger color selection than enamel inks. Since every color requires a separate screen, the process can be time-consuming if the design has several colors involved. In most cases, the graphic features are printed on the rear side of the glass, which eventually gets sealed or bonded with a touchscreen or display. Except for the edges of the glass, the ink is almost never directly exposed to ambient conditions and corrosion. However, if the ink is not specially formulated for printing on glass, it can lose adhesion and begin to chip off very quickly.

Digital printing on glass

Digital printing on glass works like a regular inkjet printer, where all you need is a digital art file to print. It offers greater flexibility in terms of changing designs at the last minute. Unlike screen printing, where even the smallest design variation requires the construction of a new screen, modifying an art file for digital printing is extremely quick and easy. This makes it a great choice for prototyping and achieving faster time-to-market products. But it is important to note that the inks utilized for glass digital printing are thinner as compared to the inks employed in screen printing. Hence, while working with light or pastel shades, multiple layers may be required to achieve a sufficient level of opacity. This can lead to an increased thickness, posing challenges in the optical bonding process. In contrast to screen printing, where one color is printed at a time, digital printing also allows the printing of all the different colors at once. Digital printing on glass is currently undergoing continuous developments to accommodate more types of inks.  

Frit printing on glass

Frit printing is very similar to screen printing with the exception of the ink utilized and the curing process. A unique powdered-glass ink is screen printed on the glass and then cured during the heat tempering process. It causes the ink to fuse to the glass, thus offering strong adhesion and making it extremely difficult to remove or scratch the ink off. Since frit printing offers the highest durability out of all the techniques, it is chosen for demanding applications where the glass is regularly exposed to challenging environmental conditions such as in the defense, heavy industrial, and automotive sectors. However, it is also the most expensive printing method and therefore, not as frequently employed. One of the limitations of this method is that while frit printing can be done on heat-tempered glass, it cannot be utilized for chemically-strengthened glass and the glass thickness is limited to greater than 2mm. Frit colors are also limited to black, white, and some grays.

Bringing together the right mix of functionality and durability for your custom application, the experts at GM Nameplate (GMN) can not only help you select the most suitable printing technique for your glass application, but also support your glass printing and bonding needs from prototyping through production. To learn more about GMN’s bonding solutions, visit our capabilities page here

Pam Hane
3M launches new Durable Protective Films
By Pam Hane Nov 13, 2020
3M's antimicrobial films used in airports

Bacterial growth is a constant concern for high-trafficked areas such as hospitals, offices, restaurants, and other businesses, especially in times of the global Coronavirus pandemic. As we scour for new ways to effectively clean high-touch surfaces and mitigate the chances of contamination, 3M has a promising solution to the mounting concerns of cleanability and safety.

Last month, 3M launched two new Durable Protective Films as follows

  • 7750AM – 2-mil clear PET film with permanent adhesive
  • 7760AM – 2-mil clear PET film with removable adhesive

Adding an extra layer of protection between cleaning cycles, both the films are resistant to scratches, abrasion, and various cleaning agents such as bleach, soap, disinfectant wipes, and hydrogen peroxide. The top hard coat is treated with an EPA-registered silver ion antimicrobial additive that impedes the growth of bacteria, mold, and mildew within the film itself. Designed for smooth surfaces, the protective films can be applied to several substrates such as metal, glass, and plastic. The films also offer excellent UV resistance, durability, and can be customized to any shape or size.

Applications for 3M’s Durable Protective Film

3M’s Durable Protective Film enhances surfaces and features 3M adhesive technology for both short-term and long-term applications. Given the current need to reduce risks associated with the transmission of COVID-19, these films can be employed at schools, hospitals, gyms, food processing plants, public transit services, and retail shops. They are exceptionally beneficial for frequently touched surfaces such as touchscreen displays, medical devices, light switches, point-of-sales systems, fitness equipment, control panels, and user-interfaces.

Want to incorporate 3M’s Durable Protective Films in your products?

As a Preferred Converter of 3M, GMN can help you add this extra layer of protection to your products. Reach out to our experts to discuss your unique needs. 

Backlighting technologies: Electroluminescence (part 5 of 5)
By Steve Baker Oct 22, 2020
Electroluminescence backlighting

In this final blog of our five-part series on backlighting, we will be looking at electroluminescent lamps in detail. In the first blog, we discussed how to approach a backlighting project and reviewed the different backlighting solutions in the subsequent blogs, namely discrete LEDs, light guide film, and fiber optic weave.

What is electroluminescent lighting?

Popularized in the 1980s, electroluminescence is a technology that works by sending an electric current through phosphorus, a semiconductor that emits light when charged. Electroluminescent (EL) lamps can be mounted on printed membranes or printed circuit boards.

Advantages of electroluminescent lighting

Governed by the design requirements, EL lamps can be zoned in selective areas to ensure optimum diffusion of light. With minimal light bleed, it doesn’t require blocking layers between different sections that are lit. Like fiber optic technology, EL lamps can also be integrated with discrete LEDs to have indictor lights and light up large areas simultaneously. Some of the advantages of EL backlighting technology include –

  • Ability to illuminate large surfaces
  • Limited impact on the tactile feel of buttons or domes
  • No light bleeds
  • Varied color options via overlay printing

Unlike light guide films and fiber optics where the light color can be changed at the source, there are certain limitations with the EL backlighting method. The core colors that phosphorus can produce are white and blue-green. While generating other exotic colors is possible, it can significantly add to the cost of the design. One way to navigate this shortcoming is to have the EL light in one color (preferably white) and then print the graphic overlay in the desired color scheme. If you need different colored lighting for separate areas, the sections can be isolated by adding additional traces.

Disadvantages of electroluminescent lighting

The biggest limitation with EL is the half-life of phosphorus. After 4,00 hours, the phosphorus begins to degrade, thereby dimming the backlit area. EL also requires a DC to AC power conversion which may not be possible to integrate into many designs. This typically means that EL backlighting needs to be designed in from the very beginning of the design cycle and cannot be added as a last-minute drop-in feature. The main challenges with EL include –

  • The half-life of 4,000 hours (phosphorus begins to degrade after)
  • Requires DC to AC convertor

Considering the limited life span of this backlighting solution and the price point of this mature technology, it is a viable solution in a few unique cases.

To see how electroluminescent lighting works, watch our short video below. 

Backlighting technologies: Fiber optic weave (part 4 of 5)
By Steve Baker Oct 20, 2020
Fiber optic weave backlighting technology

In our backlighting blog series, we have discussed how to approach a backlighting project and reviewed two popular backlighting technologies – discrete LEDs and light guide film. In this blog post, we will be focusing on the third backlighting technology – fiber optic weave.

What is fiber optic backlighting technology?

Fiber optic technology utilizes a bundle of thin optic fibers that transport light from a single LED to a large surface. Made of acrylic, every individual optic strand is thin, pliable, and extremely durable. However, it should be noted that the LED used is always a bullet LED, which requires a printed circuit board or copper flex circuit as a base. Bullet LEDs cannot be mounted directly on printed membranes.

Advantages of fiber optic backlighting technology

Fiber optics are often integrated in tandem with discrete LEDs, where surface-mount LEDs are used for indicator lighting and fiber optics are utilized to light up the larger area, including icons, texts, patterns, or graphics. As this backlighting technology requires only one LED to illuminate the entire assembly, the power consumption is fairly low.

Given the working mechanism of fiber optics, the color of the lit area or assembly is dictated by the color of the bullet LED. RGB bullet LEDs can be employed to achieve a wide array of color options. Lighting up different sections with different colors can be achieved by utilizing separate layers (separate optic bundles) and using desired colored LEDs as the light source. Alternatively, you can also use a white bullet LED and regulate the colors through the printed graphic overlay.

The main benefits of fiber optic include –

  • Ability to illuminate large surfaces with a single bullet LED
  • Low power consumption
  • Minimal impact on tactile feedback over metal domes
  • Mid-range price point

Limitations of fiber optic backlighting technology -

While using a single LED is one of the biggest advantages of a fiber optic technology, it may not be bright enough to illuminate a very large area, especially if the device is primarily used in ambient light. It may also be challenging to light different areas with different colors. This issue can be addressed by configuring more than one fiber optic bundle in the design. However, integrating multiple bundles often translates to increased cost.

While we continue to see this backlighting technology in several user interfaces, we anticipate that it may soon give way to thinner backlighting solutions as devices become smaller and lighter.  

To see how a fiber optic backlighting technology works, watch our short video below.

Backlighting technologies: Light guide film (part 3 of 5)
By Steve Baker Oct 13, 2020
Keypad with light guide film backlighting

If you have read our previous posts in this backlighting series, you should already know what questions to ask before starting a backlighting project as well as when to use discrete LEDs. In this blog, we will be discussing the next backlighting technology – light guide film.

What is a light guide film?

Light guide film, much like it sounds, uses a thin film to guide the light from the LED(s) to the areas that need to be lit. The film has a reflective coating on the top and bottom layers of the film. The top layer is laser etched or abraded in the areas where we need light to escape and light the overlay. With varying depths and customized etching patterns, the distribution of light can be easily controlled, allowing specific areas to be brighter or dimmer.

Since the light feeds directly into the edge of the film, this technique uses side-fire or right-angled LED(s) to facilitate the optimal diffusion of light through the entire length of the film. The precise alignment and orientation of the film and LED(s) are extremely critical to the success of the design.

Advantages of a light guide film

The film’s low profile allows it to limit the impact on tactile feedback of metal snap domes or buttons. As a result, it is usually mounted directly below the graphic overlay and can be seamlessly integrated into thin and tight spaces. With minimal loss of light from the source to the other edge of the film, this technique promises uniform lighting across the entire plane with increased efficiency. It is a great solution for lighting large areas while still maintaining a mid-range price point. 

Some of the core benefits of a light guide film include –

  • Uniform lighting and brightness
  • Limited impact on the tactile feel of buttons or domes
  • Energy efficiency Ideal for lighting small, large, and curved surfaces
  • Suited for thin, compact, and flexible designs

Limitations of a light guide film

While light guide films are gaining momentum across several industries, few challenges need to be addressed while working with this technology. When the light travels from the LED through the film material, the edges are often illuminated very brightly, resulting in unwanted light leaks. This can be overcome by employing an opaque panel filler along the border of the film. Since LED(s) are butted up against one end of the film, it can create hotspots in areas around the light source. This can be eliminated by adjusting the printing process of the overlay to add a printed opaque layer. Due to the placement of the LEDs, light guide films generally struggle with lighting up the same area with multiple colors.

The main design concerns with light guide films include –

  • Light leaks from the edges
  • Potential hotspots around the LEDs
  • Limitations to backlighting the same area with multiple colors

Regardless of the drawbacks, light guide films are continuing to grow in popularity and the challenges will be mitigated as the technology evolves.

To see a few examples of light guide film projects and learn more about this backlighting technology, watch our short video below.

Backlighting technologies: Discrete LEDs (part 2 of 5)
By Steve Baker Oct 08, 2020
Automotive panel with discrete LEDs

Last week we kickstarted a five-part blog series on backlighting technologies. Our first blog provides a framework to approach any new backlighting project and overcome design challenges. In this blog, we will be focusing on the first and the most popular backlighting technology – discrete LEDs.

Light-emitting diodes (LEDs), also referred to as discrete LEDs, are point-source lights that can be lit individually or in a group to illuminate a small area. Thanks to their low cost, thin construction, and long operating life, discrete LEDs have enjoyed widespread popularity and adoption across industries as diverse as medical, aerospace, automotive, and more.

Types of LEDs

LEDs come in different packages of varying shapes, sizes, types, and heights. The most commonly utilized types include surface-mount LEDs (top-fire or side-fire) and bullet LEDs. LED-backlit designs can be constructed in a range of colors and brightness levels. For example, a bi-colored LED as an indicator light turns green when the device is in use and the same light turns orange when the device is in standby mode.

In addition to the traditional single and bi-colored LEDs, RGB LEDs have opened doors to a wide gamut of colors and accent lighting options. RGB technology, combining three LEDs in a single package, mixes the three primary colors (red, green, and blue) in varying intensities to generate any color on the RGB spectrum. As a result, a single LED is capable of producing multiple colors.

LEDs are available in different correlated color temperature (CCT) values like the cool blues, warm yellows, and other tints. Whether you need dimmable, flashing, or non-flashing lights, LED designs can be composed in various styles. They can also be configured to light up all at once or selectively, as the design dictates. While surface-mount LEDs can either be mounted on a silver printed membrane, copper-etched flex circuit, or a printed circuit board with a connector that attaches to the mainboard, bullet LEDs can only be mounted on the latter two.

Advantages of LED backlighting

As point-sources of light, LEDs are great for small icons or indicator light applications, communicating the working or the status of the device. Some of the core advantages of discrete LEDs are:

  • Thin and robust construction
  • Limited impact on the tactile feel of buttons or snap domes
  • Long operating life (100,000 - 500,000+ hours)
  • Ability to illuminate the same area with different colors
  • Varying brightness level and color options
  • Cost-effective

Limitations with LED backlighting

LEDs usually struggle with lighting up large surfaces uniformly. A high count of LEDs in a concentrated area or placement of them close to a graphic overlay can create unwanted hotspots (bright areas) over or near the light source. Fortunately, both of these issues can be overcome by utilizing an elastomer keypad or overlay. Rubber overlays optimize light diffusion from LEDs, thereby mitigating hotspots and ensuring consistent brightness over the surface. A common challenge with elastomer is that it has a very different texture compared to a polycarbonate overlay and adds substantial thickness to the construction stack-up. Light dams or barricades often need to be incorporated in the design to overcome light bleed from one LED to the adjacent window. If you need to backlight a larger area and elastomer is not possible, you may want to consider a light guide film or fiber optic weave, which will be covered in our upcoming blogs.

To see a few examples of LED backlighting projects and learn more about this technology, watch our short video below. 

Backlighting technologies: Getting started (part 1 of 5)
By Steve Baker Oct 01, 2020
LED backlit user interface

This month we are kicking off a five-part blog series on backlighting. The series will begin with an overview of how to approach a backlighting project and each subsequent blog will review one of the four most popular backlighting technologies: discrete LEDs, light guide film, fiber optic weave, and electroluminescence.  

Why should you be thinking about backlighting?

Backlighting has become an industry standard to augment the functionality and aesthetics of a device. From home appliances to aircraft cabins, and car dashboards to industrial controllers, backlit devices and accents are becoming increasingly ubiquitous. Backlighting is a simple way to improve visual appeal, enhance the user experience, and lend a distinctive style to your user interfaces. It can assist and guide users towards the correct operation of a device, especially in dimly lit and dark environments. It also provides vital feedback about user actions and interactions.

How to determine the most optimal backlighting solution?

Designers and product development teams often wonder when the right time is to start thinking about backlighting when developing new products. Ideally, backlighting should be considered at the very beginning of the design phase. This gives you the flexibility to evaluate available technologies and allows engineers to integrate backlighting seamlessly with the other technologies and features of the design.

To establish the best backlighting solution, the first step is to create a list of requirements and assess the proposed design. Start by asking these questions:

  • What environment will the device be primarily used in - indoor or outdoor?  
  • Will the device be primarily used in ambient light, bright sunlight, or dimly lit spaces?
  • Do you want to light up a small indicator window or backlight large areas like texts and graphics?
  • How many colors do you need?
  • Will all the areas be lit at once or do they need to be independently controlled?
  • Are there any buttons or snap domes that need to be integrated into the design as well?
  • What power type is available – is it a portable unit or a plug-in?
  • What are the cost constraints?

Backlighting design concerns and considerations

Based on the responses to these questions, you should be able to evaluate which backlighting solution or combination of backlighting solutions could work with your device. Once you have evaluated and selected the most appropriate technology, you need to address all the design concerns and challenges that the technology presents. A few parameters to address include –

  • Will the light source create hotspots? If yes, how can they be mitigated?   
  • Will the light bleed from one section to the other? Do I need a light-blocking layer? 
  • Is the construction stack-up too thin or too thick for the design? 
  • Is the backlighting affecting the tactile feedback of the buttons or switch technology? 
  • What brightness level does the design demand? 
  • Should the light source be mounted on a printed circuit board or printed membrane? 
  • What are the minimum and maximum sizes of the light source that can be used in the design? 
  • How many light sources do I need? 

It is the interplay of several factors that ultimately dictate and influence the design, each of which is important when examining the cost structure of the project. While this is not an exhaustive list of design considerations and concerns, it provides a framework to effectively begin to approach your backlighting project by forecasting design hurdles and addressing them promptly. 

To dive deeper into the four most popular backlighting technologies, read our other blogs in this series -