Aerospace Blog

You are now viewing GMN Aerospace blogs. To view all GMN Blogs click here.
Chris Beason
GMN supports aerospace students through 2021 PNAA scholarship
By Chris Beason Apr 08, 2021
A group of aerospace students learning

For the 7th year in a row, GMN Aerospace is proud to share that we have once again donated to the Pacific Northwest Aerospace Alliance (PNAA) scholarship fund. As a long-standing aerospace supplier, we understand how important it is to support the next generation in this exciting field.

Each year, GMN Aerospace’s donation helps fund scholarships for students pursuing aerospace education at an accredited college or university in the Pacific Northwest. This year’s scholarship recipient is Daniel Beeson, a student in the Aeronautics and Astronautics program at the University of Washington. The scholarship was awarded during a virtual reception at the 2021 PNAA Aerospace conference.

Once Beeson obtains his degree, he plans to serve as a pilot for the United States Air Force before becoming a test pilot in the future. When asked about how the scholarship helps him, Beeson stated “In the uncertain times of COVID-19, many people and families have been experiencing financial difficulties. My family and I are not excluded from this crisis. This scholarship means more than just money. It means I don’t have to worry about my rent payment or my parent’s mortgage. It means I don’t have to calculate how much money I can afford to spend on food at the store.”

GMN makes the donation each year in the name of longtime employee Brent Sletmoe, who worked for many years as part of the GMN Aerospace team. We are proud to support local students like Daniel Beeson as they pursue their dream of working in the aerospace industry.

PNAA scholarship award

Mike Sorrels
Video: Understanding steel rule die-cutting
By Mike Sorrels Mar 30, 2021
Clamshell press at GMN's fabrication cell

In the manufacturing landscape, die-cutting is an indispensable fabrication process used to convert a wide range of materials into specific shapes and sizes. Whether you wish to utilize a custom-shaped silicone foam into a gasket, require a panel filler for a medical device, or simply need to cut out labels and adhesives, die-cutting allows you to efficiently cut materials in large volumes with increased consistency and accuracy.

While there are several die-cutting methods such as laser cutting, water-jet cutting, and rotary cutting, our video below offers a glimpse into steel rule die-cutting, one of the most common cutting methods utilized at GMN.

Steel rule dies and clamshell die-cutting press 

Made of steel, the die is formed by bending, curving, cutting, and shaping a straight steel rule in the required pattern. Once the rule is mounted and secured on a laser-cut wooden board, the die is ready to use. The lead time to make a steel rule die ranges between one to three days, depending on the complexity of the design.

Steel rule die-cutting is typically performed on a clamshell press. Comprised of two platens – one stationary and one movable – the press in different tonnages can support varied sizes and materials. As seen in the video, the die is installed on the stationary platen and the material to be cut is placed on the movable platen.

The precise alignment of the material is ensured with one of the following ways:

  • 3-point registration system - This consists of two grips to hold the material in place and one guide mark to accurately align it with the die.
  • Pin-register system - Pre-punched registration marks on the substrate itself that can be aligned to the die position. 

The movable platen is pressed against the stationary one to complete the cutting process. Although most of the steel rule die-cutting is performed on a clamshell press, GMN also utilizes vertical, cylinder, horizontal, roll-to-roll, and hydraulic punch presses to cut a broad array of materials such as polycarbonate, paper, foam, Lexan, and aluminum. The hardness of the material directly influences the maximum material thickness that the presses can accommodate.

Advantages of steel rule die-cutting

With the versatility to accommodate varying shapes, sizes, materials, and designs, steel rule die-cutting is undoubtedly one of the most popular die-cut fabrication methods to meet your unique needs. Steel rule dies allow up to 10,000 hits approximately, and therefore, can be used for medium to high production volumes. In addition to achieving tolerances as low as 0.01”, steel rule die-cutting offers you the flexibility to accomplish kiss cuts, custom-shaped die-outs, clean cuts, scoring lines, and perforations.

Limitations with steel rule die-cutting

One of the limitations with steel rule die-cutting is that the steel rule has a minimum bending radius of 0.03” which means that any designs with square corners or the ones that require the steel rule to bend less than 0.03” are not suited for this technique. Nonetheless, it is a highly preferred solution due to its cost-effectiveness when compared with chemical etch dies and Class A tools. 

To see some of the clamshell presses at GMN in action, watch our video here.

Chris Beason
April O’Donahue honored by Leading Ladies of Aerospace
By Chris Beason Mar 04, 2021
April O' Donahue speaking at 2019 PNAA conference

GMN is proud to share that our very own April O’Donahue, Senior New Program Manager - GMN Aerospace, was recently recognized by the Leading Ladies of Aerospace organization as part of their weekly “Wonder Women” series. Each week, the series features an influential woman in aerospace who has broken barriers and serves as an inspiration to others.

April began her career in the aerospace industry in 1993, but her ties to the industry date back further. April’s grandmother worked for Boeing in the 1950s, and she still has family members that continue to work in the field today. Having been so closely associated with the industry, pursuing a career in aerospace was a natural fit.

Since first joining GMN in 1996, April has held a multitude of different roles within the organization. Beginning her career as a quality inspector, she is now the Senior New Program Manager. Over the years, April has supported projects for hundreds of companies, ranging from simple products for small aeronautics start-ups to large, complex projects for global companies like Boeing.

When April began her career, she was one of only a few women on the team. Since then, she has seen an increase in the presence of female leadership not only at GMN, but across the entire industry. Current estimates suggest that around 24% of aerospace employees are women, which is a staunch increase from when April started her career. The Leading Ladies of Aerospace “Wonder Woman” series highlights women like April who are improving female representation in the aerospace industry by acting as role models for future generations.

As part of her “Wonder Woman” feature, April recalled that her favorite career moment was when she was asked to speak at the 2019 Women in Aerospace Conference. She added, “I never thought someone like me would have the opportunity to speak at such an amazing and important event. I hope being featured inspires other women to get out of their comfort zone and go for their goals, regardless of what they think is holding them back.”

GMN is thrilled to have employees like April leading the charge to make aerospace a more inclusive and diverse industry.

Pam Hane
GMN named Preferred Converter by Laird
By Pam Hane Jan 28, 2021
Laird Preferred Converter

We are happy to share that GMN has been honored by Laird Performance Materials as a Preferred Converter for Performance Excellence. Only a select group of organizations throughout North America rise to the level of Preferred Partner.

Laird Performance Materials is a market leader for advanced protection solutions for electronic components and systems. The Preferred Converter status gives GMN direct access to Laird’s performance-critical solutions including, thermal interface materials, EMI suppression, and absorption materials. It also allows GMN to offer custom engineered solutions to our customers at competitive prices and faster time-to-market.

To learn more about this strategic partnership with Laird Performance Materials, read our press release here.

Video: Fundamentals of pad printing
By Richard Smylie Jan 21, 2021
Off-set pad printing process

Pad printing is an offset printing process where ink is transferred from a cliché to the required component via a pad. Bringing together a blend of consistency, repeatability, and durability, pad printing can help you achieve intricate patterns and designs. While most decorative techniques such as screen and lithographic printing require a flat surface, pad printing is one of the very few processes that is well suited for decorating gently curved, irregular, textured, and/or cylindrical surfaces. Predominantly seen in the automotive, electronics, appliance, personal care, and medical industries, pad printing is often chosen for applications that will endure significant handling and need to withstand the test of time.

Custom pad printing process 

Our latest video was created to not only equip you with the essentials of pad printing, but also to walk you through the step-by-step pad printing process.

  1. The artwork is etched onto the cliché (flat plate), and ink is deposited into the etched recess.
  2. A silicone pad picks up the inked image and descends onto the part to transfer a clean, crisp, and lasting image.
  3. The pad is pressed on a polyester film to remove any excess ink. Comprising of a low-tack pressure-sensitive adhesive, the polyester film removes any residual ink from the pad prior to the next printing cycle.

From standard to programmable multi-axis printers, the video below offers a glimpse into the different pad printing presses utilized at GM Nameplate (GMN). Armed with a rotating fixture, the programmable multi-axis printer is capable of numerous hits in multiple color combinations on different axes, all in a single set-up. This capability eliminates the need to transfer the part manually from one station to the other, resulting in significant time and cost savings.

Pad printing on different substrates

Pad printing is compatible with a broad range of substrates including stainless steel, polycarbonate, polyethylene terephthalate (PET), glass, polyvinyl chloride (PVC), acrylic, and acrylonitrile butadiene styrene (ABS). Very few plastic materials such as low (LDPE) and high-density polyethylene (HDPE), and polypropylene aren’t cohesive with pad printing inks and require a pre-treatment to ensure good adhesion.

Pad printing considerations

For every project, custom fixtures are designed and built to register the component to the pad printing head. The alignment of the ink pad with respect to the size and geometry of the part is specifically engineered to ensure exact registration. As seen with the Nissan badge in the video, the pliability of the silicone pad allows for printing with extreme precision, preventing the ink from coming in contact on the inside walls of the recessed letters. Maintaining the viscosity of the ink is extremely crucial to ensure the ink deposition accuracy and consistency. While the ink needs to be fluid enough to deposit on the substrate, it should not bleed out of the impression area. Thinners and adhesion promoters can be added to inks to achieve the desired viscosity level. Most of the inks used for pad printing at GMN are air-dried and are usually cured in conveyor ovens. Several other factors including the shape, material and durometer of the pad, location and color of the etched artwork, and tilt of the ink pad, are critical to the success of any project.

To see the pad printing process in action, watch our video here.

Pam Hane
3M launches new Durable Protective Films
By Pam Hane Nov 13, 2020
3M's antimicrobial films used in airports

Bacterial growth is a constant concern for high-trafficked areas such as hospitals, offices, restaurants, and other businesses, especially in times of the global Coronavirus pandemic. As we scour for new ways to effectively clean high-touch surfaces and mitigate the chances of contamination, 3M has a promising solution to the mounting concerns of cleanability and safety.

Last month, 3M launched two new Durable Protective Films as follows

  • 7750AM – 2-mil clear PET film with permanent adhesive
  • 7760AM – 2-mil clear PET film with removable adhesive

Adding an extra layer of protection between cleaning cycles, both the films are resistant to scratches, abrasion, and various cleaning agents such as bleach, soap, disinfectant wipes, and hydrogen peroxide. The top hard coat is treated with an EPA-registered silver ion antimicrobial additive that impedes the growth of bacteria, mold, and mildew within the film itself. Designed for smooth surfaces, the protective films can be applied to several substrates such as metal, glass, and plastic. The films also offer excellent UV resistance, durability, and can be customized to any shape or size.

Applications for 3M’s Durable Protective Film

3M’s Durable Protective Film enhances surfaces and features 3M adhesive technology for both short-term and long-term applications. Given the current need to reduce risks associated with the transmission of COVID-19, these films can be employed at schools, hospitals, gyms, food processing plants, public transit services, and retail shops. They are exceptionally beneficial for frequently touched surfaces such as touchscreen displays, medical devices, light switches, point-of-sales systems, fitness equipment, control panels, and user-interfaces.

Want to incorporate 3M’s Durable Protective Films in your products?

As a Preferred Converter of 3M, GMN can help you add this extra layer of protection to your products. Reach out to our experts to discuss your unique needs. 

Neha Toshniwal
Paul Michaels joins PNAA Board of Directors
By Neha Toshniwal Nov 09, 2020
Paul Michaels, Director of Aerospace Operations at GMN

We are extremely happy to share that Paul Michaels, Director of Aerospace Operations at GMN, has been appointed to the Pacific Northwest Aerospace Alliance (PNAA) Board of Directors.

A graduate from the University of Washington, Paul Michaels, joined GMN in 2002. Today, he oversees all aerospace operations and supports over 300 aerospace and defense companies globally. Over the years, he has consistently focused on a culture of world-class customer support and service within the aerospace supply chain. He has also been recognized as the Aerospace Executive of the Year by the PNAA in 2016. 

GMN congratulates Paul Michaels on his appointment to the PNAA Board of Directors. We are confident that the Pacific Northwest aerospace community will greatly benefit from his extensive knowledge, experience, and invaluable insights. Please read our entire press release here.

Backlighting technologies: Electroluminescence (part 5 of 5)
By Steve Baker Oct 22, 2020
Electroluminescence backlighting

In this final blog of our five-part series on backlighting, we will be looking at electroluminescent lamps in detail. In the first blog, we discussed how to approach a backlighting project and reviewed the different backlighting solutions in the subsequent blogs, namely discrete LEDs, light guide film, and fiber optic weave.

What is electroluminescent lighting?

Popularized in the 1980s, electroluminescence is a technology that works by sending an electric current through phosphorus, a semiconductor that emits light when charged. Electroluminescent (EL) lamps can be mounted on printed membranes or printed circuit boards.

Advantages of electroluminescent lighting

Governed by the design requirements, EL lamps can be zoned in selective areas to ensure optimum diffusion of light. With minimal light bleed, it doesn’t require blocking layers between different sections that are lit. Like fiber optic technology, EL lamps can also be integrated with discrete LEDs to have indictor lights and light up large areas simultaneously. Some of the advantages of EL backlighting technology include –

  • Ability to illuminate large surfaces
  • Limited impact on the tactile feel of buttons or domes
  • No light bleeds
  • Varied color options via overlay printing

Unlike light guide films and fiber optics where the light color can be changed at the source, there are certain limitations with the EL backlighting method. The core colors that phosphorus can produce are white and blue-green. While generating other exotic colors is possible, it can significantly add to the cost of the design. One way to navigate this shortcoming is to have the EL light in one color (preferably white) and then print the graphic overlay in the desired color scheme. If you need different colored lighting for separate areas, the sections can be isolated by adding additional traces.

Disadvantages of electroluminescent lighting

The biggest limitation with EL is the half-life of phosphorus. After 4,00 hours, the phosphorus begins to degrade, thereby dimming the backlit area. EL also requires a DC to AC power conversion which may not be possible to integrate into many designs. This typically means that EL backlighting needs to be designed in from the very beginning of the design cycle and cannot be added as a last-minute drop-in feature. The main challenges with EL include –

  • The half-life of 4,000 hours (phosphorus begins to degrade after)
  • Requires DC to AC convertor

Considering the limited life span of this backlighting solution and the price point of this mature technology, it is a viable solution in a few unique cases.

To see how electroluminescent lighting works, watch our short video below. 

Backlighting technologies: Fiber optic weave (part 4 of 5)
By Steve Baker Oct 20, 2020
Fiber optic weave backlighting technology

In our backlighting blog series, we have discussed how to approach a backlighting project and reviewed two popular backlighting technologies – discrete LEDs and light guide film. In this blog post, we will be focusing on the third backlighting technology – fiber optic weave.

What is fiber optic backlighting technology?

Fiber optic technology utilizes a bundle of thin optic fibers that transport light from a single LED to a large surface. Made of acrylic, every individual optic strand is thin, pliable, and extremely durable. However, it should be noted that the LED used is always a bullet LED, which requires a printed circuit board or copper flex circuit as a base. Bullet LEDs cannot be mounted directly on printed membranes.

Advantages of fiber optic backlighting technology

Fiber optics are often integrated in tandem with discrete LEDs, where surface-mount LEDs are used for indicator lighting and fiber optics are utilized to light up the larger area, including icons, texts, patterns, or graphics. As this backlighting technology requires only one LED to illuminate the entire assembly, the power consumption is fairly low.

Given the working mechanism of fiber optics, the color of the lit area or assembly is dictated by the color of the bullet LED. RGB bullet LEDs can be employed to achieve a wide array of color options. Lighting up different sections with different colors can be achieved by utilizing separate layers (separate optic bundles) and using desired colored LEDs as the light source. Alternatively, you can also use a white bullet LED and regulate the colors through the printed graphic overlay.

The main benefits of fiber optic include –

  • Ability to illuminate large surfaces with a single bullet LED
  • Low power consumption
  • Minimal impact on tactile feedback over metal domes
  • Mid-range price point

Limitations of fiber optic backlighting technology -

While using a single LED is one of the biggest advantages of a fiber optic technology, it may not be bright enough to illuminate a very large area, especially if the device is primarily used in ambient light. It may also be challenging to light different areas with different colors. This issue can be addressed by configuring more than one fiber optic bundle in the design. However, integrating multiple bundles often translates to increased cost.

While we continue to see this backlighting technology in several user interfaces, we anticipate that it may soon give way to thinner backlighting solutions as devices become smaller and lighter.  

To see how a fiber optic backlighting technology works, watch our short video below.

Backlighting technologies: Light guide film (part 3 of 5)
By Steve Baker Oct 13, 2020
Keypad with light guide film backlighting

If you have read our previous posts in this backlighting series, you should already know what questions to ask before starting a backlighting project as well as when to use discrete LEDs. In this blog, we will be discussing the next backlighting technology – light guide film.

What is a light guide film?

Light guide film, much like it sounds, uses a thin film to guide the light from the LED(s) to the areas that need to be lit. The film has a reflective coating on the top and bottom layers of the film. The top layer is laser etched or abraded in the areas where we need light to escape and light the overlay. With varying depths and customized etching patterns, the distribution of light can be easily controlled, allowing specific areas to be brighter or dimmer.

Since the light feeds directly into the edge of the film, this technique uses side-fire or right-angled LED(s) to facilitate the optimal diffusion of light through the entire length of the film. The precise alignment and orientation of the film and LED(s) are extremely critical to the success of the design.

Advantages of a light guide film

The film’s low profile allows it to limit the impact on tactile feedback of metal snap domes or buttons. As a result, it is usually mounted directly below the graphic overlay and can be seamlessly integrated into thin and tight spaces. With minimal loss of light from the source to the other edge of the film, this technique promises uniform lighting across the entire plane with increased efficiency. It is a great solution for lighting large areas while still maintaining a mid-range price point. 

Some of the core benefits of a light guide film include –

  • Uniform lighting and brightness
  • Limited impact on the tactile feel of buttons or domes
  • Energy efficiency Ideal for lighting small, large, and curved surfaces
  • Suited for thin, compact, and flexible designs

Limitations of a light guide film

While light guide films are gaining momentum across several industries, few challenges need to be addressed while working with this technology. When the light travels from the LED through the film material, the edges are often illuminated very brightly, resulting in unwanted light leaks. This can be overcome by employing an opaque panel filler along the border of the film. Since LED(s) are butted up against one end of the film, it can create hotspots in areas around the light source. This can be eliminated by adjusting the printing process of the overlay to add a printed opaque layer. Due to the placement of the LEDs, light guide films generally struggle with lighting up the same area with multiple colors.

The main design concerns with light guide films include –

  • Light leaks from the edges
  • Potential hotspots around the LEDs
  • Limitations to backlighting the same area with multiple colors

Regardless of the drawbacks, light guide films are continuing to grow in popularity and the challenges will be mitigated as the technology evolves.

To see a few examples of light guide film projects and learn more about this backlighting technology, watch our short video below.